全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的降水现象自动识别方法
Automatic Recognition Method of Precipitation Phenomena Based on Deep Learning

DOI: 10.12677/JSTA.2021.94031, PP. 256-262

Keywords: 雨滴谱,降水现象自动识别,深度学习,图像分类
Raindrop Spectrum
, Automatic Recognition of Precipitation Phenomena, Deep Learning, Image Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于全国开展的降水天气现象平行观测工作期间积累的数据基础,收集并整理降水现象仪自动观测数据和人工观测数据,解析降水现象仪产生的雨滴谱数据文件,依据降水粒子大小和下落速度分级以及累计时段内粒子数量,生成与之对应的二维图像,同时结合降水现象仪平行观测期间的人工观测数据,利用深度学习图像分类技术进行训练,建立降水现象自动识别模型,完成不同降水现象的自动识别。模型训练集和验证集平均准确率均达到86%,雨的测试准确率达到62.7%,雨和毛毛雨的总识别率达到89.1%,雪的测试准确率达到93%,说明利用深度卷积神经网络对雨滴谱数据生成的雨滴图进行自动降水现象识别方案可行。
Based on the data accumulated during the parallel observation of precipitation weather phenomena carried out throughout the country, collect and sort out the automatic observation data and manual observation data of the precipitation phenomenometer, analyze the raindrop spectrum data file generated by the precipitation phenomenometer to generate the corresponding two-di- mensional image. At the same time, combined with the artificial observation data during the parallel observation period of the precipitation phenomenon instrument, the deep learning image classification technology is used for training, and the automatic recognition model of precipitation phenomenon is established to complete the automatic recognition of different precipitation phenomena. The average accuracy of the model training set and validation set is 86%, the test accuracy of rain is 62.7%, the total recognition rate of rain and drizzle is 89.1%, and the test accuracy of snow is 93%, indicating that the scheme of automatic precipitation recognition based on the raindrop pattern generated by the deep convolutional neural network is feasible.

References

[1]  杜波, 马舒庆, 梁明珠, 刘达新, 张晓宇, 王柏林. 雨滴谱降水现象仪对比观测试验技术应用分析[J]. 气象科技, 2017, 45(6): 995-1002.
[2]  中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003.
[3]  文斌青, 陈国强. 浅析DSG1型降水现象仪[J]. 农业与技术, 2019, 39(10): 141-142.
[4]  Uchida, K., Tanaka, M. and Okutomi, M. (2018) Coupled Convolution Layer for Convolutional Neural Network. Neural Networks, 105, 197-205.
https://doi.org/10.1016/j.neunet.2018.05.002
[5]  文斌青, 陈国强. 浅析DSG1型降水现象仪[J]. 农业与技术, 2019(10): 135-136.
[6]  杨宁, 张晋, 刘钧. 雨滴谱式降水现象仪降水类型判定算法优化探究[J]. 气象科技进展, 2018, 8(6): 89-94.
[7]  张静, 宋中玲. 降水现象仪与人工观测资料对比分析[J]. 青海气象, 2019(3): 107-112.
[8]  陆明, 申双和, 王春艳, 等. 基于图像识别技术的夏玉米生育期识别方法初探[J]. 中国农业气象, 2011, 32(3): 423-429.
[9]  Akilan, T., Wu, Q.M.J., Yang, Y., et al. (2017) Fusion of Transfer Learning Features and Its Application in Image Classification. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, 30 April-3 May 2017, 1-5.
https://doi.org/10.1109/CCECE.2017.7946733

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133