全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自噬介导下的胃癌化疗耐药性
Autophagy-Mediated Chemotherapy Resistance of Gastric Cancer

DOI: 10.12677/ACM.2021.1110660, PP. 4499-4506

Keywords: 胃癌,自噬,化学抗性,ncRNA
Gastric Cancer
, Autophagy, Chemoresistance, ncRNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

胃癌是消化系统中常见恶性肿瘤之一,铂类药物是标准的一线治疗,在治疗过程中胃癌细胞会以一种适应性方式生存产生多药耐药性细胞株,即化疗耐药性,疾病进展。自噬作为一种高度保守的体内平衡途径,主要受长链非编码RNA (LncRNA)、miRNA等不同因子的调控,在胃癌的化学抗性中起着双重作用。因此,近年来小分子抑制剂或激活剂作为靶向自噬过程中的关键调控点为胃癌的治疗提供了新的策略。在这篇综述中,我们提供了系统总结,着重于自噬与胃癌化疗抗药性之间的关系。我们全面讨论了长链非编码LncRNA和miRNA等不同因子在自噬途径和胃癌化学耐药性调控中的作用和分子机制。
Objective: Gastric cancer is one of the common malignant tumors in the digestive system. Platinum drugs are the standard first-line treatment. During the treatment, gastric cancer cells will survive in an adaptive way to produce multidrug resistant cell lines, that is, chemotherapy resistance and disease progression. As a highly conserved homeostasis pathway, autophagy is mainly regulated by different factors such as long non-coding RNA (LncRNA) and miRNA, and plays a dual role in the chemoresistance of gastric cancer. In recent years, small molecule inhibitors or activators have provided new strategies for the treatment of gastric cancer as key regulatory points in the process of targeted autophagy. In this review, we provide a systematic summary focusing on the relationship between autophagy and chemotherapy resistance in gastric cancer. We comprehensively discussed the roles and molecular mechanisms of different factors such as long-chain non-coding LncRNA and miRNA in the autophagy pathway and the regulation of gastric cancer chemoresistance.

References

[1]  Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2]  Bermudez, M., Aguilar-Medina, M., Lizarraga-Verdugo, E., Avendano-Felix, M., Silva-Benitez, E., Lopez-Camarillo, C., et al. (2019) LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Frontiers in Oncology, 9, Article No. 1008.
https://doi.org/10.3389/fonc.2019.01008
[3]  Ren, J., Ding, L., Zhang, D., Shi, G., Xu, Q., Shen, S., et al. (2018) Carcinoma-Associated Fibroblasts Promote the Stemness and Chemoresistance of Colorectal Cancer by Transferring Exosomal LncRNA H19. Theranostics, 8, 3932-3948.
https://doi.org/10.7150/thno.25541
[4]  Xiong, H., Ni, Z., He, J., Jiang, S., Li, X., He, J., et al. (2017) LncRNA HULC Triggers Autophagy via Stabilizing Sirt1 and Attenuates the Chemosensitivity of HCC Cells. Oncogene, 36, 3528-3540.
https://doi.org/10.1038/onc.2016.521
[5]  Sun, W., Zu, Y., Fu, X. and Deng, Y. (2017) Knockdown of lncRNA-XIST Enhances the Chemosensitivity of NSCLC Cells via Suppression of Autophagy. Oncology Reports, 38, 3347-3354.
https://doi.org/10.3892/or.2017.6056
[6]  Wang, Z.H., Wang, J.H., Wang, K.Q., Zhou, Y. and Wang, J. (2020) LncRNA FEZF1-AS1 Promoted Chemoresistance, Autophagy and Epithelial-Mesenchymal Transition (EMT) through Regulation of miR-25-3p/ITGB8 Axis in Prostate Cancer. European Review for Medical and Pharmacological Sciences, 24, 2281-2293.
https://doi.org/10.26355/eurrev_202003_20494
[7]  Huang, F., Chen, W., Peng, J., Li, Y., Zhuang, Y., Zhu, Z., et al. (2018) LncRNA PVT1 Triggers Cyto-Protective Autophagy and Promotes Pancreatic Ductal Adenocarcinoma Development via the miR-20a-5p/ULK1 Axis. Molecular Cancer, 17, Article No. 98.
https://doi.org/10.1186/s12943-018-0845-6
[8]  Gu, J., Wang, Y., Wang, X., Zhou, D., Wang, X., Zhou, M., et al. (2018) Effect of the LncRNA GAS5-MiR-23a-ATG3 Axis in Regulating Autophagy in Patients with Breast Cancer. Cellular Physiology and Biochemistry, 48, 194-207.
https://doi.org/10.1159/000491718
[9]  Wang, Z. and Jin, J. (2019) LncRNA SLCO4A1-AS1 Promotes Colorectal Cancer Cell Proliferation by Enhancing Autophagy via miR-508-3p/PARD3 Axis. Aging, 11, 4876-4889.
https://doi.org/10.18632/aging.102081
[10]  Pan, Z., Wu, C., Li, Y., Li, H., An, Y., Wang, G., et al. (2020) LncRNA DANCR Silence Inhibits SOX5-Medicated Progression and Autophagy in Osteosarcoma via Regulating miR-216a-5p. Biomedicine & Pharmacotherapy, 122, Article ID: 109707.
https://doi.org/10.1016/j.biopha.2019.109707
[11]  Li, Z., Lu, M., Zhou, Y., Xu, L., Jiang, Y., Liu, Y., et al. (2021) Role of Long Non-Coding RNAs in the Chemoresistance of Gastric Cancer: A Systematic Review. OncoTargets and Therapy, 14, 503-518.
https://doi.org/10.2147/OTT.S294378
[12]  Xin, L., Zhou, Q., Yuan, Y.W., Zhou, L.Q., Liu, L., Li, S.H., et al. (2019) METase/lncRNA HULC/FoxM1 Reduced Cisplatin Resistance in Gastric Cancer by Suppressing Autophagy. Journal of Cancer Research and Clinical Oncology, 145, 2507-2517.
https://doi.org/10.1007/s00432-019-03015-w
[13]  Song, Z., Jia, N., Li, W. and Zhang, X.Y. (2020) LINC01572 Regulates Cisplatin Resistance in Gastric Cancer Cells by Mediating miR-497-5p. OncoTargets and Therapy, 13, 10877-10887.
https://doi.org/10.2147/OTT.S267915
[14]  Hu, Y, Su Y., Lei, X., Zhao, H., Wang, L., Xu, T, et al. (2020) LINC00641/miR-582-5p Mediate Oxaliplatin Resistance by Activating Autophagy in Gastric Adenocarcinoma. Scientific Report, 10, Article No. 14981.
https://doi.org/10.1038/s41598-020-70913-2
[15]  Xi, Z., Si, J. and Nan J. (2019) LncRNA MALAT1 Potentiates Autophagy Associated Cisplatin Resistance by Regulating the MicroRNA30b/Autophagy Related Gene 5 Axis in Gastric Cancer. International Journal of Oncology, 54, 239-248.
https://doi.org/10.3892/ijo.2018.4609
[16]  Wang, S., Li, M.Y., Liu, Y., Vlantis, A.C., Chan, J.Y., Xue, L., et al. (2020) The Role of MicroRNA in Cisplatin Resistance or Sensitivity. Expert Opinion on Therapeutic Targets, 24, 885-897.
https://doi.org/10.1080/14728222.2020.1785431
[17]  Fu, Q., Cheng, J., Zhang, J., Zhang, Y., Chen, X., Xie, J., et al. (2016) Downregulation of YEATS4 by miR-218 Sensitizes Colorectal Cancer Cells to L-OHP-Induced Cell Apoptosis by Inhibiting Cytoprotective Autophagy. Oncology Reports, 36, 3682-3690.
https://doi.org/10.3892/or.2016.5195
[18]  Nyhan, M.J., O’Donovan, T.R., Boersma, A.W., Wiemer, E.A. and McKenna, S.L. (2016) MiR-193b Promotes Autophagy and Non-Apoptotic Cell Death in Oesophageal Cancer Cells. BMC Cancer, 16, Article No. 101.
https://doi.org/10.1186/s12885-016-2123-6
[19]  Zhao, J., Nie, Y., Wang, H. and Lin, Y. (2016) miR-181a Suppresses Autophagy and Sensitizes Gastric Cancer Cells to Cisplatin. Gene, 576, 828-833.
https://doi.org/10.1016/j.gene.2015.11.013
[20]  Gao, Y., Liu, Z., Ding, Z., Hou, S., Li. J. and Jiang, K. (2018) MicroRNA-155 Increases Colon Cancer Chemoresistance to Cisplatin by Targeting Forkhead Box O3. Oncology Letters, 15, 4781-4788.
https://doi.org/10.3892/ol.2018.7976
[21]  Xiao, C.R., Hong, X.L., Hu, J.S., Chen, Y.M. and Lu, Q.Y. (2017) Targeting miR155 Restores Chemotherapy Sensitivity in Drug-Resistant Myeloma Cell-Line RPMI8226/DOX Cells. Zhonghua Xue Ye Xue Za Zhi; 38, 55-59.
[22]  Tian, L., Zhao, Z., Xie, L. and Zhu, J. (2018) MiR-361-5p Suppresses Chemoresistance of Gastric Cancer Cells by Targeting FOXM1 via the PI3K/Akt/mTOR Pathway. Oncotarget, 9, 4886-4896.
https://doi.org/10.18632/oncotarget.23513
[23]  Huang, H., Tang, J., Zhang, L., Bu, Y. and Zhang, X. (2018) miR-874 Regulates Multiple-Drug Resistance in Gastric Cancer by Targeting ATG16L1. International Journal of Oncology, 53, 2769-2779.
https://doi.org/10.3892/ijo.2018.4593
[24]  Li, B., Wang, W., Li, Z., Chen, Z., Zhi, X., Xu, J., et al. (2017) MicroRNA-148a-3p Enhances Cisplatin Cytotoxicity in Gastric Cancer through Mitochondrial Fission Induction and Cyto-Protective Autophagy Suppression. Cancer Letters, 410, 212-227.
https://doi.org/10.1016/j.canlet.2017.09.035
[25]  Gu, Y., Fei, Z. and Zhu, R. (2020) miR-21 Modulates Cisplatin Resistance of Gastric Cancer Cells by Inhibiting Autophagy via the PI3K/Akt/mTOR Pathway. Anticancer Drugs, 31, 385-393.
https://doi.org/10.1097/CAD.0000000000000886
[26]  Tian, H., Wang, W., Meng, X., Wang, M., Tan, J., Jia, W., et al. (2019) ERas Enhances Resistance to Cisplatin-Induced Apoptosis by Suppressing Autophagy in Gastric Cancer Cell. Frontiers in Cell and Developmental Biology, 7, Article No. 375.
https://doi.org/10.3389/fcell.2019.00375
[27]  Guo, Q., Jing, F.J., Xu, W., Li, X., Li, X., Sun, J.L., et al. (2019) Ubenimex Induces Autophagy Inhibition and EMT Suppression to Overcome Cisplatin Resistance in GC Cells by Perturbing the CD13/EMP3/PI3K/AKT/NF-κB Axis. Aging, 12, 80-105.
https://doi.org/10.18632/aging.102598
[28]  Lu, R., Zhao, G., Yang, Y., Jiang, Z., Cai, J. and Hu, H. (2019) Inhibition of CD133 Overcomes Cisplatin Resistance Through Inhibiting PI3K/AKT/mTOR Signaling Pathway and Autophagy in CD133-Positive Gastric Cancer Cells. Technology in Cancer Research & Treatment, 18, Article ID: 1533033819864311.
https://doi.org/10.1177/1533033819864311
[29]  Xiao, F., Ouyang, B., Zou, J., Yang, Y., Yi, L. and Yan, H. (2020) Trim14 Promotes Autophagy and Chemotherapy Resistance of Gastric Cancer Cells by Regulating AMPK/mTOR Pathway. Drug Development Research, 81, 544-550.
https://doi.org/10.1002/ddr.21650
[30]  Li, P., Hu, J., Shi, B. and Tie, J. (2020) Baicalein Enhanced Cisplatin Sensitivity of Gastric Cancer Cells by Inducing Cell Apoptosis and Autophagy via Akt/mTOR and Nrf2/Keap 1 Pathway. Biochemical and Biophysical Research Communications, 531, 320-327.
https://doi.org/10.1016/j.bbrc.2020.07.045
[31]  Liu, X., Duan, C., Ji, J., Zhang, T., Yuan, X., Zhang, Y., et al. (2017) Cucurbitacin B Induces Autophagy and Apoptosis by Suppressing CIP2A/PP2A/mTORC1 Signaling Axis in Human Cisplatin Resistant Gastric Cancer Cells. Oncology Reports, 38, 271-278.
https://doi.org/10.3892/or.2017.5648
[32]  Nie, Y., Liang, X., Liu, S., Guo, F., Fang, N. and Zhou, F. (2020) WASF3 Knockdown Sensitizes Gastric Cancer Cells to Oxaliplatin by Inhibiting ATG12-Mediated Autophagy. American Journal of the Medical Sciences, 359, 287-295.
https://doi.org/10.1016/j.amjms.2020.02.007
[33]  Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. Lancet, 396, 635-648.
https://doi.org/10.1016/S0140-6736(20)31288-5
[34]  Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R. and Sitarz, R. (2020) Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. International Journal of Molecular Sciences, 21, Article No. 4012.
https://doi.org/10.3390/ijms21114012
[35]  Venerito, M., Link, A., Rokkas, T. and Malfertheiner, P. (2016) Gastric Cancer—Clinical and Epidemiological Aspects. Helicobacter, 21, 39-44.
https://doi.org/10.1111/hel.12339
[36]  den Hoed, C.M. and Kuipers, E.J. (2016) Gastric Cancer: How Can We Reduce the Incidence of this Disease? Current Gastroenterology Reports, 18, Article No. 34.
https://doi.org/10.1007/s11894-016-0506-0
[37]  Choi, Y.J. and Kim, N. (2016) Gastric Cancer and Family History. The Korean Journal of Internal Medicine, 31, 1042-1053.
https://doi.org/10.3904/kjim.2016.147
[38]  Ou, J., Peng, Y., Yang, W., Zhang, Y., Hao, J., Li, F., et al. (2019) ABHD5 Blunts the Sensitivity of Colorectal Cancer to Fluorouracil via Promoting Autophagic Uracil Yield. Nature Communications, 10, Article No. 1078.
https://doi.org/10.1038/s41467-019-08902-x
[39]  Feng, W., Ding, Y., Zong, W. and Ju, S. (2019) Non-Coding RNAs in Regulating Gastric Cancer Metastasis. Clinica Chimica Acta, 496, 125-133.
https://doi.org/10.1016/j.cca.2019.07.003
[40]  Biagioni, A., Skalamera, I., Peri, S., Schiavone, N., Cianchi, F., Giommoni, E., et al. (2019) Update on Gastric Cancer Treatments and Gene Therapies. Cancer and Metastasis Reviews, 38, 537-548.
https://doi.org/10.1007/s10555-019-09803-7
[41]  An, Y., Zhou, L., Huang, Z., Nice, E.C., Zhang, H. and Huang, C. (2019) Molecular Insights into Cancer Drug Resistance from a Proteomics Perspective. Expert Review of Proteomics, 16, 413-429.
https://doi.org/10.1080/14789450.2019.1601561
[42]  Fu, S., Liu, X., Luo, M., Xie, K., Nice, E.C., Zhang, H., et al. (2017) Proteogenomic Studies on Cancer Drug Resistance: Towards Biomarker Discovery and Target Identification. Expert Review of Proteomics, 14, 351-362.
https://doi.org/10.1080/14789450.2017.1299006
[43]  Wang, S.Y., Hu, H.Z., Qing, X.C., Zhang, Z.C. and Shao, Z.W. (2020) Recent Advances of Drug Delivery Nanocarriers in Osteosarcoma Treatment. Journal of Cancer, 11, 69-82.
https://doi.org/10.7150/jca.36588
[44]  Shi, W.J. and Gao, J.B. (2016) Molecular Mechanisms of Chemoresistance in Gastric Cancer. World Journal of Gastrointestinal Oncology, 8, 673-681.
https://doi.org/10.4251/wjgo.v8.i9.673
[45]  Wu, X., Zheng, Y., Han, B. and Dong, X. (2018) Long Noncoding RNA BLACAT1 Modulates ABCB1 to Promote Oxaliplatin Resistance of Gastric Cancer via Sponging miR-361. Biomedicine & Pharmacotherapy, 99, 832-838.
https://doi.org/10.1016/j.biopha.2018.01.130
[46]  Hsieh, M.Y., Fan, J.R., Chang, H.W., Chen, H.C., Shen, T.L., Teng, S.C., et al. (2014) DNA Topoisomerase III Alpha Regulates p53-Mediated Tumor Suppression. Clinical Cancer Research, 20, 1489-1501.
https://doi.org/10.1158/1078-0432.CCR-13-1997
[47]  Park, H., Cho, S.Y., Kim, H., Na, D., Han, J.Y., Chae, J., et al. (2015) Genomic Alterations in BCL2L1 and DLC1 Contribute to Drug Sensitivity in Gastric Cancer. Proceedings of the National Academy of Sciences of the United States of America, 112, 12492-12497.
https://doi.org/10.1073/pnas.1507491112
[48]  Xu, J., Lamouille, S. and Derynck, R. (2009) TGF-β-Induced Epithelial to Mesenchymal Transition. Cell Research, 19, 156-172.
https://doi.org/10.1038/cr.2009.5
[49]  Painter, J.D., Galle-Treger, L. and Akbari, O. (2020) Role of Autophagy in Lung Inflammation. Frontiers in Immunology, 11, Article No. 1337.
https://doi.org/10.3389/fimmu.2020.01337
[50]  Moosavi, M.A. and Djavaheri-Mergny, M. (2019) Autophagy: New Insights into Mechanisms of Action and Resistance of Treatment in Acute Promyelocytic Leukemia. International Journal of Molecular Sciences, 20, Article No. 3559.
https://doi.org/10.3390/ijms20143559
[51]  White, E. (2012) Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nature Reviews Cancer, 12, 401-410.
https://doi.org/10.1038/nrc3262
[52]  Zheng, K., He, Z., Kitazato, K. and Wang, Y. (2019) Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics, 9, 104-125.
https://doi.org/10.7150/thno.30308
[53]  Lee, H.J., Venkatarame Gowda Saralamma, V., Kim, S.M., Ha, S.E., Raha, S., Lee, W.S., et al. (2018) Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients, 10, Article No. 1043.
https://doi.org/10.3390/nu10081043
[54]  Chen, G., Zhang, M. and Li, Y. (2019) Research Progress in the Role of microRNA-155 in Regulation of Autophagy and Diagnosis and Treatment for Gastric Cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 44, 87-91.
[55]  Yun, C.W. and Lee, S.H. (2018) The Roles of Autophagy in Cancer. International Journal of Molecular Sciences, 19, Article No. 3466.
https://doi.org/10.3390/ijms19113466
[56]  Zhang, X., Wang, S., Wang, H., Cao, J., Huang, X., Chen, Z., et al. (2019) Circular RNA circNRIP1 acts as a Microrna-149-5p Sponge to Promote Gastric Cancer Progression via the AKT1/mTOR Pathway. Molecular Cancer, 18, Article No. 20.
https://doi.org/10.1186/s12943-018-0935-5
[57]  Yan, H., Qiu, C., Sun, W., Gu, M., Xiao, F., Zou, J., et al. (2018) Yap Regulates Gastric Cancer Survival and Migration via SIRT1/Mfn2/Mitophagy. Oncology Reports, 39, 1671-1681.
https://doi.org/10.3892/or.2018.6252
[58]  Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R.A. (2008) DNA Repair Pathways as Targets for Cancer Therapy. Nature Reviews Cancer, 8, 193-204.
https://doi.org/10.1038/nrc2342
[59]  Amaravadi, R.K, Lippincott-Schwartz, J., Yin, X.M., Weiss, W.A., Takebe, N., Timmer, W., et al. (2011) Principles and Current Strategies for Targeting Autophagy for Cancer Treatment. Clinical Cancer Research, 17, 654-666.
https://doi.org/10.1158/1078-0432.CCR-10-2634
[60]  Usman, R.M., Razzaq, F., Akbar, A., Farooqui, A.A., Iftikhar, A., Latif, A., et al. (2021) Role and Mechanism of Autophagy-Regulating Factors in Tumorigenesis and Drug Resistance. Asia-Pacific Journal of Clinical Oncology, 17, 193-208.
https://doi.org/10.1111/ajco.13449
[61]  Fang, Y.J., Jiang, P., Zhai, H. and Dong, J.S. (2020) LncRNA GAS8-AS1 Inhibits Ovarian Cancer Progression through Activating Beclin1-Mediated Autophagy. OncoTargets and Therapy, 13, 10431-10440.
https://doi.org/10.2147/OTT.S266389
[62]  Yu, Z.Y., Wang, Z., Lee, K.Y., Yuan, P. and Ding, J. (2018) Effect of Silencing Colon Cancer-Associated Transcript 2 on the Proliferation, Apoptosis and Autophagy of Gastric Cancer BGC-823 Cells. Oncology Letters, 15, 3127-3132.
https://doi.org/10.3892/ol.2017.7677
[63]  Zhu, L., Zhu, Y., Han, S., Chen, M., Song, P., Dai, D., et al. (2019) Impaired Autophagic Degradation of lncRNA ARHGAP5-AS1 Promotes Chemoresistance in Gastric Cancer. Cell Death & Disease, 10, Article No. 383.
https://doi.org/10.1038/s41419-019-1585-2
[64]  Si, Y., Yang, Z., Ge, Q., Yu, L., Yao, M., Sun, X., et al. (2019) Long Non-Coding RNA Malat1 Activated Autophagy, Hence Promoting Cell Proliferation and Inhibiting Apoptosis by Sponging miR-101 in Colorectal Cancer. Cellular & Molecular Biology Letters, 24, Article No. 50.
https://doi.org/10.1186/s11658-019-0175-8
[65]  Zhang, F., Li, Q., Zhu, K., Zhu, J., Li, J., Yuan, Y., et al. (2020) LncRNA LINC00265/miR-485-5p/IRF2-Mediated Autophagy Suppresses Apoptosis in Acute Myeloid Leukemia Cells. American Journal of Translational Research, 12, 2451-2462.
[66]  Xu, J., Yang, R., Hua, X., Huang, M., Tian, Z., Li, J., et al. (2020) lncRNA SNHG1 Promotes Basal Bladder Cancer Invasion via Interaction with PP2A Catalytic Subunit and Induction of Autophagy. Molecular Therapy Nucleic Acids, 21, 354-366.
https://doi.org/10.1016/j.omtn.2020.06.010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133