全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于生物信息学数据库分析TOP2A在肾透明细胞癌中的表达及临床意义
Expression and Clinical Significance of TOP2A in Clear Renal Cell Carcinoma Based on Bioinformatics Database

DOI: 10.12677/ACM.2021.1110655, PP. 4470-4479

Keywords: 肾透明细胞癌,TOP2A,数据库,生物信息学
Clear Cell Renal Cell Carcinoma
, Topoisomerase IIA, Database, Bioinformatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨拓扑异构酶IIA (Topoisomerase IIA, TOP2A)在肾透明细胞癌(clear cell renal cell carcinoma, ccRCC)组织中的表达及临床意义。方法:通过GEPIA、UALCAN以及Human Protein Atlas (HPA)数据库分析TOP2A在正常肾组织和ccRCC组织中的表达。通过UALCAN数据库进行TOP2A mRNA与ccRCC临床病理特征的相关性分析。采用GEPIA、Kaplan-Meier及UALCAN分析TOP2A表达与ccRCC预后的关系。通过TIMER数据库分析TOP2A表达与ccRCC免疫水平的相关性。以及通过STRING和Metascape数据库分别进行TOP2A蛋白质互作网络的构建及其功能机制的探索。结果:与正常肾组织相比,TOP2A在ccRCC组织中显著高表达(P < 0.05),且TOP2A mRNA的表达水平与ccRCC的病理分期、临床分期以及淋巴结分期呈正相关。生存分析显示,TOP2A低表达的患者的总体生存率明显高于高表达患者(P < 0.05)。TIMER数据库分析显示TOP2A的表达与B细胞(r = 0.356, P < 0.01)、CD4+ T细胞(r = 0.232, P < 0.01)、CD8+ T细胞(r = 0.285, P < 0.01)、巨噬细胞(r = 0.304, P < 0.01)、中性粒细胞(r = 0.43, P < 0.01)以及树突状细胞(r = 0.466, P < 0.01)的免疫浸润水平呈正相关。此外,通过STRING数据库构建了TOP2A蛋白互作网络,富集功能分析显示TOP2A及其相互作用的基因主要参与细胞代谢过程、正负向调节生物进程、多生物过程、繁殖过程、节律过程、代谢过程、对刺激的反应、生物调节以及生长等途径。结论:TOP2A在ccRCC中高表达,并与其发生发展以及不良预后相关,因此TOP2A可能成为ccRCC的新型治疗靶点及预后标志物。
Objective: To explore the expression and clinical significance of Topoisomerase IIA (TOP2A) in clear renal cell carcinoma (ccRCC). Methods: The mRNA and protein expression of TOP2A in ccRCC tissues were detected using databases including GEPIA, UALCAN and Human protein atlas (HPA). UALCAN database was applied to analyze the correlation between TOP2A mRNA and clinicopathological characteristics of ccRCC patients. The relationship between TOP2A expression and prognosis of ccRCC was analyzed with GEPIA, Kaplan-Meier and UALCAN. TIMER database was used to investigate correlations between TOP2A expression and various types of immune cell infiltration in ccRCC. Additionally, STRING and Metascape databases were used to construct a functional protein interaction network of TOP2A and investigate its functional mechanism. Results: TOP2A expression level in ccRCC tissues was significantly higher than in normal renal tissues (P < 0.05), and TOP2A mRNA expression level was positively correlated with the histological grade, clinical stage and N stage of ccRCC. Survival analysis showed that the overall survival rate of patients with low TOP2A expression was significantly higher than that of patients with high TOP2A expression (P < 0.05). TIMER database shows that the TOP2A expression had a positive correlation with infiltrating levels of B cells (r = 0.356, P < 0.01), CD4+ T cells (r = 0.232, P < 0.01), CD8+ T cells (r = 0.285, P < 0.01), macrophages (r = 0.304, P < 0.01), neutrophils (r = 0.43, P < 0.01) and dendritic cells (r = 0.466, P < 0.01) in ccRCC. In addition, the TOP2A protein interaction network was constructed through the

References

[1]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[2]  Hsieh, J.J., Purdue, M.P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M., et al. (2017) Renal Cell Carcinoma. Nature Reviews Disease Primers, 3, Article No. 17009.
https://doi.org/10.1038/nrdp.2017.9
[3]  Diaz-Montero, C.M., Rini, B.I. and Finke, J.H. (2020) The Immunology of Renal Cell Carcinoma. Nature Reviews Nephrology, 16, 721-735.
https://doi.org/10.1038/s41581-020-0316-3
[4]  Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[5]  Panvichian, R., Tantiwetrueangdet, A., Angkathunyakul, N. and Leelaudomlipi, S. (2015) Top2a Amplification and Overexpression in hepatocellular Carcinoma Tissues. BioMed Research International, 2015, Article ID: 381602.
https://doi.org/10.1155/2015/381602
[6]  Wang, J.C. (2002) Cellular Roles of DNA Topoisomerases: A Molecular Perspective. Nature Reviews Molecular Cell Biology, 3, 430-440.
https://doi.org/10.1038/nrm831
[7]  Morimoto, S., Tsuda, M., Bunch, H., Sasanuma, H., Austin, C. and Takeda, S. (2019) Type II DNA Topoisomerases Cause Spontaneous Double-Strand Breaks in Genomic DNA. Genes, 10, Article No. 868.
https://doi.org/10.3390/genes10110868
[8]  Chen, T., Sun, Y., Ji, P., Kopetz, S. and Zhang, W. (2015) Topoisomerase IIalpha in Chromosome Instability and Personalized Cancer Therapy. Oncogene, 34, 4019-4031.
https://doi.org/10.1038/onc.2014.332
[9]  Heestand, G.M., Schwaederle, M., Gatalica, Z., Arguello, D. and Kurzrock, R. (2017) Topoisomerase Expression and Amplification in Solid Tumours: Analysis of 24,262 Patients. European Journal of Cancer, 83, 80-87.
https://doi.org/10.1016/j.ejca.2017.06.019
[10]  Kou, F., Sun, H., Wu, L., Li, B., Zhang, B., Wang, X., et al. (2020) TOP2A Promotes Lung Adenocarcinoma Cells’ Malignant Progression and Predicts Poor Prognosis in Lung Adenocarcinoma. Journal of Cancer, 11, 2496-2508.
https://doi.org/10.7150/jca.41415
[11]  Hooks, K.B., Audoux, J., Fazli, H., Lesjean, S., Ernault, T., Dugot-Senant, N., et al. (2018) New Insights into Diagnosis and Therapeutic Options for Proliferative Hepatoblastoma. Hepatology, 68, 89-102.
https://doi.org/10.1002/hep.29672
[12]  Ogino, M., Fujii, T., Nakazawa, Y., Higuchi, T., Koibuchi, Y., Oyama, T., et al. (2020) Implications of Topoisomerase (TOP1 and TOP2α) Expression in Patients with Breast Cancer. In Vivo, 34, 3483-3487.
https://doi.org/10.21873/invivo.12188
[13]  Zhang, R., Xu, J., Zhao, J. and Bai, J.H. (2018) Proliferation and Invasion of Colon Cancer Cells Are Suppressed by Knockdown of TOP2A. Journal of Cellular Biochemistry, 119, 7256-7263.
https://doi.org/10.1002/jcb.26916
[14]  Tang, Z., Li, C., Kang, B., Gao, G., Li, C. and Zhang, Z. (2017) GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Research, 45, W98-W102.
https://doi.org/10.1093/nar/gkx247
[15]  Chandrashekar, D.S., Bashel, B., Balasubramanya, S., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B.V.S.K., et al. (2017) UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 19, 649-658.
https://doi.org/10.1016/j.neo.2017.05.002
[16]  Thul, P.J. and Lindskog, C. (2018) The Human Protein Atlas: A Spatial Map of the Human Proteome. Protein Science, 27, 233-244.
https://doi.org/10.1002/pro.3307
[17]  Nagy, A., Lanczky, A., Menyhart, O. and Gy?rffy, B. (2018) Validation of miRNA Prognostic Power in Hepatocellular Carcinoma Using Expression Data of Independent Datasets. Scientific Reports, 8, Article No. 11515.
https://doi.org/10.1038/s41598-018-29514-3
[18]  Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J.S., et al. (2017) TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Research, 77, e108-e110.
https://doi.org/10.1158/0008-5472.CAN-17-0307
[19]  Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015) STRING v10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452.
https://doi.org/10.1093/nar/gku1003
[20]  Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523.
https://doi.org/10.1038/s41467-019-09234-6
[21]  Lou, N., Ruan, A.M., Qiu, B., Bao, L., Xu, Y.C., Zhao, Y., et al. (2017) miR-144-3p as a Novel Plasma Diagnostic Biomarker for Clear Cell Renal Cell Carcinoma. Urologic Oncology, 35, 36.e7-36.e14.
https://doi.org/10.1016/j.urolonc.2016.07.012
[22]  Wang, J., Yang, H., Si, Y., Hu, D., Yu, Y., Zhang, Y., et al. (2017) Iodine Promotes Tumorigenesis of Thyroid Cancer by Suppressing Mir-422a and Up-Regulating MAPK1. Cellular Physiology and Biochemistry, 43, 1325-1336.
https://doi.org/10.1159/000481844
[23]  Turley, H., Comley, M., Houlbrook, S., Nozaki, N., Kikuchi, A., Hickson, I.D., et al. (1997) The Distribution and Expression of the Two Isoforms of DNA Topoisomerase II in Normal and Neoplastic Human Tissues. British Journal of Cancer, 75, 1340-1346.
https://doi.org/10.1038/bjc.1997.227
[24]  Romero, A., Martin, M., Cheang, M.C., López García-Asenjo, J.A., Oliva, B., He, X., et al. (2011) Assessment of Topoisomerase II Alpha Status in Breast Cancer by Quantitative PCR, Gene Expression Microarrays, Immunohistochemistry, and Fluorescence in Situ Hybridization. American Journal of Pathology, 178, 1453-1460.
https://doi.org/10.1016/j.ajpath.2010.12.042
[25]  de Resende, M.F., Vieira, S., Chinen, L.T., Chiappelli, F., da Fonseca, F.P., Guimar?es, G.C., et al. (2013) Prognostication of Prostate Cancer Based on TOP2A Protein and Gene Assessment: TOP2A in Prostate Cancer. Journal of Translational Medicine, 11, Article No. 36.
https://doi.org/10.1186/1479-5876-11-36
[26]  Cao, Y., Zhang, G., Wang, P., Zhou, J., Gan, W., Song, Y., et al. (2017) Clinical Significance of UGT1A1 Polymorphism and Expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in Gastric Cancer. BMC Gastroenterology, 17, Article No. 2.
https://doi.org/10.1186/s12876-016-0561-x
[27]  Gong, M.C., Chen, W.Q., Jin, Z.Q., Lyu, J., Meng, L., Wu, H., et al. (2021) Prognostic Value and Significant Pathway Exploration Associated with TOP2A Involved in Papillary Thyroid Cancer. International Journal of General Medicine, 14, 3485-3496.
https://doi.org/10.2147/IJGM.S316145
[28]  Neganova, I., Tilgner, K., Buskin, A., Paraskevopoulou, I., Atkinson, S.P., Peberdy, D., et al. (2014) CDK1 Plays an Important Role in the Maintenance of Pluripotency and Genomic Stability in Human Pluripotent Stem Cells. Cell Death & Disease, 5, Article ID: e1508.
https://doi.org/10.1038/cddis.2014.464
[29]  Heo, J., Noh, B.J., Lee, S., Lee, H.Y., Kim, Y.H., Lim, J., et al. (2020) Phosphorylation of TFCP2L1 by CDK1 Is Required for Stem Cell Pluripotency and Bladder Carcinogenesis. EMBO Molecular Medicine, 12, Article ID: e10880.
https://doi.org/10.15252/emmm.201910880
[30]  Pan, X.W., Chen, L., Hong, Y., Xu, D.F., Liu, X., Li, L., et al. (2016) EIF3D Silencing Suppresses Renal Cell Carcinoma Tumorigenesis via Inducing G2/M Arrest through Downregulation of Cyclin B1/CDK1 Signaling. International Journal of Oncology, 48, 2580-2590.
https://doi.org/10.3892/ijo.2016.3459

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133