|
风量配比影响循环流化床锅炉燃烧特性研究
|
Abstract:
循环流化床(CFB)锅炉因其燃烧效率高、燃料适应性好和排放污染少等优点得到了广泛的应用。本文对某240 t/h循环流化床锅炉进行了数值模拟研究,分析改变一二次风配比对内部流动和燃烧特性的影响,结果表明:一次风所占比例θ过小,炉膛内部流化效果差;一次风所占比例θ过大,不能为炉膛中心的燃烧及时供氧。一次风占比θ = 0.55时(工况三)能得到较均匀的床料和温度场分布,同时NOx出口质量浓度最低。
Circulating fluidized bed (CFB) boilers have been widely used due to the high combustion efficiency, good fuel adaptability and low pollutant emission. This paper conducted a numerical simulation analysis on a 240 t/h circulating fluidized bed boiler to analyze the influence of changing the ratio of primary and secondary air on the internal flow and combustion characteristics. The results show that the small proportion of primary air θ resulted in poor effect of fluidization inside the furnace; too large proportion of primary air θ cannot provide oxygen for the combustion in the center of the furnace timely; when the proportion of primary air θ is 0.55 (Condition III), the bed material and temperature distributions are even, and NOx concentration at the outlet is the lowest.
[1] | 徐旭常, 吕俊复, 张海. 燃烧理论与燃烧设备[M]. 第2版. 北京: 科学出版社, 2012. |
[2] | 姚禹歌, 黄中, 张缦, 杨海瑞, 吕俊复, 岳光溪. 中国循环流化床燃烧技术的发展与展望[J/OL]. 热力发电: 1-8[2021-09-23]. http://kns.cnki.net/kcms/detail/61.1111.TM.20210528.1721.002.html |
[3] | 刘雪敏, 尹炜迪, 汪佩宁, 杨海瑞. 循环流化床锅炉床压降对其燃烧效率的影响[J]. 煤炭学报, 2016, 41(10): 2484-2489. |
[4] | Liu, Z., Zhong, W., Shao, Y. and Liu, X. (2020) Exergy Analysis of Supercritical CO2 Coal-Fired Circulating Fluidized Bed Boiler System Based on the Combustion Process. Energy, 208, 118327.
https://doi.org/10.1016/j.energy.2020.118327 |
[5] | 苗苗, 张缦, 吕俊复, 杨海瑞, 张凯. 流化床燃烧中N_2O生成机理与减排技术[J]. 清华大学学报(自然科学版), 2020, 60(6): 507-517. |
[6] | Li, J.-J., Zhang, M., Yang, H.-R., Lu, J.-F., Zhao, X.-X. and Zhang, J.-C. (2016) The Theory and Practice of NO Emission Control for Circulating Fluid-ized Bed Boilers Based on the Re-Specification of the Fluidization State. Fuel Processing Technology, 150, 88-93. https://doi.org/10.1016/j.fuproc.2016.05.004 |
[7] | 肖卓楠, 徐鸿, 陈伟鹏, 张智羽. CFB锅炉采用富氧燃烧与常规燃烧方式下的热经济性分析对比[J]. 锅炉技术, 2019, 50(1): 26-31. |
[8] | 张奇月, 颜勇, 段元强, 段伦博. 超超临界350 MW富氧燃烧循环流化床设计[J]. 热力发电, 2020, 49(5): 73-80. |
[9] | 柯希玮, 张缦, 杨海瑞, 吕俊复, 郭学茂, 李军, 等. 循环流化床锅炉NO_(x)生成和排放特性研究进展[J]. 中国电机工程学报, 2021, 41 (8): 2757-2771. |
[10] | 孙经雷. 浅谈循环流化床锅炉一次风与二次风的使用[J]. 煤炭科技, 2016(4): 64-66. |
[11] | 马有福, 王凡, 袁益超, 吕俊复, 王子睿. 循环流化床锅炉一次风布风均匀性数值研究[J]. 锅炉技术, 2018, 49(6): 35-41. |
[12] | 杨雪芬, 鲁佳易, 薛大勇, 韦立校. 基于CPFD模型的循环流化床二次风穿透特性研究[J]. 机电信息, 2020(35): 22-24. |
[13] | 官伟. 90 t/h循环流化床锅炉节能改造优化方案[J]. 中国设备工程, 2020(8): 81-82. |
[14] | 彭丹, 王贲, 李威, 许超. 基于空气分级的循环流化床锅炉低氮燃烧模拟[J]. 锅炉技术, 2020, 51(5): 30-36. |
[15] | Syamlal, M. and Wittmann, C.V. (1985) Continuous Reaction Mixture Model for Coal Liquefaction Kinet-ics. Industrial & Engineering Chemistry Fundamentals, 24, 82-90. https://doi.org/10.1021/i100017a014 |