|
多尺度注意力机制的水下图像增强算法
|
Abstract:
[1] | Mobley, C.D. (1994) Light and Water: Radiative Transfer in Natural Waters. Academic Press, Cambridge. |
[2] | Xiong, W., et al. (2019) Foreground-Aware Image Inpainting. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 5833-5841. https://doi.org/10.1109/CVPR.2019.00599 |
[3] | Morel, A. (1978) Marine Optics. Earth Science Reviews, 14, 170-171. https://doi.org/10.1016/0012-8252(78)90007-7 |
[4] | Jae, J.S. (1990) Computer Modeling and the Design of Optimal Underwater Imaging Systems. IEEE Journal of Oceanic Engineering, 15, 101-111. https://doi.org/10.1109/48.50695 |
[5] | Song, W., et al. (2018) A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation Prior for Underwater Image Restoration. Advances in Multimedia Information Processing, Hefei, 21-22 September 2018, 678-688.
https://doi.org/10.1007/978-3-030-00776-8_62 |
[6] | Huang, D., Yan, W., Wei, S., et al. (2018) Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In: Interna-tional Conference on Multimedia Modeling, Springer, Cham, 453-465. https://doi.org/10.1007/978-3-319-73603-7_37 |
[7] | Ancuti, C., Ancuti, C.O., Haber, T. and Bekaert, P. (2012) Enhancing Underwater Images and Videos by Fusion. 2012 IEEE Conference on Computer Vision and Pattern Recogni-tion, Providence, 16-21 June 2012, 81-88.
https://doi.org/10.1109/CVPR.2012.6247661 |
[8] | Li, C., et al. (2020) An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Transactions on Image Processing, 29, 4376-4389. https://doi.org/10.1109/TIP.2019.2955241 |
[9] | Hou, M., Liu, R., Fan, X. and Luo, Z. (2018) Joint Residual Learning for Underwater Image Enhancement. 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, 7-10 October 2018, 4043-4047.
https://doi.org/10.1109/ICIP.2018.8451209 |
[10] | Islam, M.J., Luo, P. and Sattar, J. (2020) Simultaneous Enhance-ment and Super-Resolution of Underwater Imagery for Improved Visual Perception. |
[11] | Uplavikar, P., Wu, Z. and Wang, Z. (2019) All-in-One Underwater Image Enhancement Using Domain-Adversarial Learning. |
[12] | Li, C., Guo, J. and Guo, C. (2017) Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer. IEEE Signal Processing Letters, 25, 323-327. |
[13] | Fabbri, C., Islam, M.J. and Sattar, J. (2018) Enhancing Underwater Imagery Using Generative Adversarial Networks. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, 21-25 May 2018, 7159-7165.
https://doi.org/10.1109/ICRA.2018.8460552 |
[14] | Trucco, E. and Olmos-Antillon, A.T. (2006) Self-Tuning Un-derwater Image Restoration. IEEE Journal of Oceanic Engineering, 31, 511-519. https://doi.org/10.1109/JOE.2004.836395 |
[15] | Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolu-tional Networks for Biomedical Image Segmentation.
https://doi.org/10.1007/978-3-319-24574-4_28 |
[16] | Long, J., Shelhamer, E. and Darrell, T. (2015) Fully Convolu-tional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651.
https://doi.org/10.1109/TPAMI.2016.2572683 |
[17] | Szegedy, C., et al. (2015) Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 1-9. https://doi.org/10.1109/CVPR.2015.7298594 |
[18] | He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Ve-gas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[19] | Guo, Y., Li, H. and Zhuang, P. (2019) Underwater Image Enhance-ment Using a Multiscale Dense Generative Adversarial Network. IEEE Journal of Oceanic Engineering, 45, 862-870. |
[20] | Liu, F., Shen, C., Lin, G., et al. (2015) Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis & Machine Intelligence, 38, 2024-2039.
https://doi.org/10.1109/TPAMI.2015.2505283 |
[21] | Miyato, T., Kataoka, T., Koyama, M., et al. (2018) Spectral Normalization for Generative Adversarial Networks. International Conference on Learning Representations, Vancouver, 30 April-3 May 2018. |
[22] | Li, H., Li, J. and Wang, W. (2019) A Fusion Adversarial Underwater Image Enhancement Network with a Public Test Dataset. |
[23] | Wang, Z., Bovik, A.C., Sheikh, H.R., et al. (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13, 600-612. https://doi.org/10.1109/TIP.2003.819861 |
[24] | Zuiderveld, K. (1994) Contrast Limited Adaptive Histogram Equali-zation. In: Graphics Gems, Morgan Kaufmann Publishers, Burlington, 474-485. https://doi.org/10.1016/B978-0-12-336156-1.50061-6 |
[25] | Panetta, K., Gao, C. and Agaian, S. (2016) Hu-man-Visual-System-Inspired Underwater Image Quality Measures. IEEE Journal of Oceanic Engineering, 41, 541-551. https://doi.org/10.1109/JOE.2015.2469915 |
[26] | Mittal, A., et al. (2013) Making a “Completely Blind” Image Qual-ity Analyzer. IEEE Signal Processing Letters, 20, 209-212. https://doi.org/10.1109/LSP.2012.2227726 |