全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

受限样本联合射频指纹识别模型设计
Design of a Combined Radio Frequency Fingerprint Identification Model with Limited Samples

DOI: 10.12677/CSA.2021.1110251, PP. 2459-2477

Keywords: 辐射源个体识别,小波系数,希尔伯特黄变换,瞬时相位,相关系数
Specific Emitter Identification
, Wavelet Coefficient, Hilbert Huang Transform, Instantaneous Phase, Coefficient

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对100架民航飞机识别的现实问题,设计了包含数据分析/处理、特征参数标准数据库建立、分类、优化等模块的多特征值联合射频指纹识别模型。数据分析/处理中,分析了小波系数、瞬时相位、希尔伯特黄变换能量谱、相关系数、时域包络、概率密度函数等参数的区分度,并选定特征参数。特征参数数据库建立中,为避免RFF特征丢失,利用直接测量法建立特征参数标准数据库。分类过程中,基于相关度和阈值理念,定义了单特征分类规则及联合分类规则。最后通过人工修订参数的方法实现了模型的优化。结果表明,在硬件资源受限、选择样本数偏低的情况下,该模型平均识别率达到69.75%,为解决飞机数据识别的现实问题提供了一定的理论参考。
Aiming to solve the real problem of civilian aircraft identification, a novel combined radio frequency fingerprint (RFF) identification model is proposed, consisting of data analyzing/processing, standard characteristic parameter database establishment, classification and optimization. In data analyzing/processing step, discrimination was realized for wavelet coefficients, instantaneous phase, Hilbert Huang transform energy spectrum, coefficients, time field envelope, probability density function, on basis of which, characteristic parameters were confirmed. In standard characteristic parameter database establishment step, a standard database was found through direct measurement method to avoid losing the RFF feature. In classification step, single character assortment rule and combined classifying rule were defined, with correlative concept and threshold concept. Finally, optimization for the model was realized by modifying parameters manually. Results show that, though hardware was limited and amount of samples were fewer, average identification rate is near 69.75, providing a theoretical reference for the real problem of identifying different aircrafts.

References

[1]  Hall, J., Barbeau, M. and Kranakis, E. (2003) Detection of Transient in Radio Frequency Fingerprinting Using Signal Phase. Proceedings of 3rd IASTED International Conference on Wireless and Optical Communications, Banff, Alberta, 2003, 13-18.
[2]  余佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446.
[3]  孙丽婷, 黄知涛, 王翔等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6): 1014-1031.
[4]  张建成, 余道衡. 一个新的电路容差设计的教学模型及其算法[J]. 电子学报, 1990, 18(2): 37-43.
[5]  郑娜娥, 王盛, 张靖志, 等. 基于射频指纹的辐射源个体识别技术综述[J]. 信息工程大学学报, 2020, 21(3): 285-289.
[6]  韩洁, 张涛, 王欢欢, 等. 基于3D-Hibert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38(4): 99-109.
[7]  刘燕平, 田金鹏, 陈泳. 特征融合的射频指纹识别方法[J]. 上海大学学报(自然科学版). 2017, 23(3): 408-413.
[8]  李雨珊, 谢非佚, 陈松林, 等. 适合终端的射频指纹信号特征提取及识别[J]. 通信技术, 2018, 51(1): 63-66.
[9]  曾勇虎, 陈翔, 林云, 等. 射频指纹识别的研究现状及趋势[J]. 电波科学学报, 2020(3): 305-315.
[10]  张顺丰. MATLAB小波分析[M]. 第2版. 北京: 机械工业出版社, 2011.
[11]  赵丽. 基于小波变换的岩心高光谱特征提取及匹配方法研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133