|
Smart Grid 2021
“双碳”目标下一种新的提高含风电电力系统安全稳定预警精度方法研究
|
Abstract:
随着我国提出“碳达峰”和“碳中和”目标,风电接入电力系统发生系统稳定风险的概率逐渐加大,安全稳定预警技术已成为电力系统稳定性研究的重要环节。针对目前电力系统安全稳定预警策略存在数据量小,识别精度低等问题,提出一种新的提高含风电电力系统安全稳定预警精度方法,该方法首先对PMU采集的原始大数据进行筛选与降维预处理,提取关键特征数据,生成稳定性幅值预警指标所需的初始特征量矩阵,然后通过对含风电电力系统监控终端节点和各节点之间的区域进行编号,确定区域关联关系与对应的关联值,生成网络关联多特征向量状态检测矩阵,再结合Vinnicombe距离计算传递函数距离,判断系统是否处于稳定,并有效提高系统稳定性识别精度。最后通过10机39节点含风电新英格兰系统验证本文提出方法正确性与有效性。
With the proposal of the goals of “carbon peaking” and “carbon neutralization” in China, the risk probability of wind power connecting to power system is increasing gradually. Security and stability early warning technology has become an important link in the stability research of power system. Aiming at the problems of small amount of data and low identification accuracy in the current power system security and stability early warning strategy, a new method to improve the security and stability of early warning identification accuracy of power system integrated with wind power is proposed. Firstly, the original big data collected by PMU is screened and dimensionless preprocessed to extract the key characteristic data, generate the initial eigenvalue matrix required for the stability amplitude early warning index, then number the area between the power system monitoring terminal node and each node, determine the regional association relationship and corresponding association value, generate the network association multi eigenvector state detection matrix, and then calculate the transfer function distance combined with the Vinnicombe distance to judge whether the system is stable, and effectively improve the accuracy of system stability identification. Finally, the correctness and effectiveness of the proposed method are verified by a 10 machines and 39 nodes New England system integrated with wind power.
[1] | 邓梅, 李长福, 张颖, 等. 末端送出电网风电大规模脱网对主电网安全稳定控制策略分析[J]. 四川电力技术, 2019, 42(3): 22-25+49. |
[2] | 姜惠兰, 白玉苓, 王绍辉, 等. 风电接入对电力系统小干扰稳定影响分析方法[J]. 电力系统及其自动化学报, 2021: 1-7. |
[3] | 徐泰山, 丁茂生, 彭慧敏, 等. 交直流电力系统暂态安全稳定在线紧急控制策略并行算法[J]. 电力系统自动化, 2015, 39(10): 174-180. |
[4] | 孙宏斌, 黄天恩, 郭庆来, 等. 基于仿真大数据的电网智能型超前安全预警技术[J]. 南方电网技术, 2016, 10(3): 42-46+5. |
[5] | 钱伟, 吴嘉欣, 费树岷. 基于时滞依赖矩阵泛函的变时滞电力系统稳定性分析[J]. 电力系统自动化, 2020, 44(1): 53-58. |
[6] | 李洋麟, 江全元, 颜融, 等. 基于卷积神经网络的电力系统小干扰稳定评估[J]. 电力系统自动化, 2019, 43(2): 50-57. |
[7] | 郭晶, 张捷, 丁西, 等. 基于模糊层次分析的电网信息系统动态预警方法[J]. 中国电力, 2021, 54(5): 174-178. |
[8] | Song, D.W., Yang, X.T., Wen, B.Y., et al. (2014) A New Online Realization Method of Locating Low Frequency Oscillation Source in Power Grid Based on PMU. IEEE International Conference on Power System Technology, Chengdu, 20-22 October 2014, 530-536. https://doi.org/10.1109/POWERCON.2014.6993752 |
[9] | 陈厚合, 邵俊岩, 姜涛, 等. 基于参数灵敏度的综合能源系统安全控制策略研究[J]. 中国电机工程学报, 2020, 40(15): 4831-4843. |
[10] | 孙华东, 王一鸣, 高磊, 郭强, 等. 高比例电力电子电力系统稳定性的统一性判据研究(二): 区域稳定判据[J/OL]. 中国电机工程学报, 2021: 1-11.
https://kns.cnki.net/kcms/detail/11.2107.TM.20210809.1722.011.html, 2021-08-10. |
[11] | 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17): 1-8. |
[12] | 阿布德哈伊·撒拉姆, 欧姆·马利克. 电力系统稳定性: 建模、分析与控制[M]. 李勇, 曹一家, 蔡晔, 等, 译. 北京: 机械工业出版社, 2018. |
[13] | 于淼, 尚伟鹏, 袁志昌, 等. 基于迭代辨识方法的含风电多干扰电力系统阻尼控制[J]. 电力系统自动化, 2017, 41(23): 61-67. |
[14] | 赵庆周, 李勇, 田世明, 段义隆, 谭益, 曹一家. 基于智能配电网大数据分析的状态监测与故障处理方法[J]. 电网技术, 2016, 40(3): 774-780. |
[15] | 刘福潮, 邢晶, 王维洲, 等. 电力系统低频振荡综合预警方法研究[J]. 电力安全技术, 2015, 17(8): 29-34. |
[16] | 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J]. 自动化学报, 2020, 46(x): 1-15. |
[17] | Test Cases Library of Power System Sustained Oscillations.
http://web.eecs.utk.edu/~kaisun/Oscillation/actualcases.html |
[18] | Breuning, M.M., Kriegel, H.P. and Raymond, T.N. (2000) LOF: Identifying Density-Based Local Outlier. In: Proceedings of ACM SIGMOD International Conference on Management of Data, ACM Press, New York, 93-104. |