全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

废旧锂离子电池回收利用技术研究进展
Research Progress on Recycling Technology of Waste Lithium-Ion Batteries

DOI: 10.12677/AEP.2021.115114, PP. 946-957

Keywords: 锂离子电池,固体废弃物,回收利用,新能源
Lithium-Ion Battery
, Solid Waste, Recycling, New Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

新能源汽车及动力锂离子电池的快速发展有效缓解了城市空气污染的问题,同时,由此产生的废旧锂离子电池也给整个社会环境带了极大威胁。回收利用废旧锂离子电池并进行循环利用,不仅可以解决上述环境污染问题,同时还能弥补资源紧缺和产出可观的经济收益。本文在对动力锂离子电池的组成和结构进行解析的基础上,综述废旧锂离子电池的拆解过程,并分类介绍正极材料、负极材料、隔膜材料、电解液的回收利用技术现状。最后,对锂离子电池回收利用技术未来的发展方向进行了展望。回收市场将进一步细分,一些特殊的技术将会派上用场,同时基于多学科工艺交叉组合使用的成套智能设备也将成为重要发展方向。
The rapid development of new energy vehicles and power lithium-ion batteries has effectively al-leviated the problem of urban air pollution. However, the resulting waste lithium-ion batteries also pose a great threat to the whole social environment. Recycling waste lithium-ion batteries can not only solve the above environmental pollution problems, but also make up for the shortage of re-sources and produce considerable economic benefits. The present paper summarizes the disassem-bly process of waste lithium-ion batteries based on the analysis of the composition and structure of power lithium-ion batteries, and introduces the recycling technology of cathode materials, cathode materials, diaphragm materials and electrolyte. Finally, the future development direction of lithium-ion battery recycling technology is prospected. The recycling market will be further subdivided, and some special technologies will be used. At the same time, the complete set of in-telligent equipment based on the cross combination of multidisciplinary processes will also become an important development direction.

References

[1]  郭儒, 关晓东. 助力实现“双碳”目标——再生铝企业清洁生产研究与实践[J]. 环境保护前沿, 2021, 11(4): 763-768.
https://doi.org/10.12677/AEP.2021.114088
[2]  朱国才. 废旧动力锂离子电池回收再利用产业化进展[J]. 新材料产业, 2018(3): 31-33.
[3]  中国电池联盟联合北京绿色智汇能源技术研究院. 动力电池回收利用行业报告(2018) [EB/OL].
https://www.d1ev.com/news/shichang/66744, 2018-04-11.
[4]  Liu, J., Wang, H., Hu, T., Bai, X., Wang, S., Xie, W., et al. (2020) Recovery of LiCoO2 and Graphite from Spent Lithium-ion Batteries by Cryogenic Grinding and Froth Flotation. Minerals Engineering, 148, Article ID: 106223.
https://doi.org/10.1016/j.mineng.2020.106223
[5]  Chang, D., Chen, Y., Xi, Y., Chang, C., Jie, Y. and Hu, F. (2020) Selective Recovery of Lithium from Ternary Spent Lithium-Ion Batteries Using Sulfate Roasting-Water Leaching Process. In: Chen, X. et al., Eds., Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, Springier, Cham, 387-395.
https://doi.org/10.1007/978-3-030-36830-2_37
[6]  杨宇, 梁精龙, 李慧, 郑天新, 王斌. 废旧锂离子电池回收处理技术研究进展[J]. 矿产综合利用, 2018(6): 7-12.
[7]  陈亮, 唐新村, 张阳, 瞿毅, 王志敏. 从废旧锂离子电池中分离回收钴镍锰[J]. 中国有色金属学报, 2011, 21(5): 1192-1198.
[8]  Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J. and Liang, B. (2008) A Review of Processes and Technologies for the Recycling of Lithium-Ion Secondary Batteries. Journal of Power Sources, 177, 512-527.
[9]  Tarascon J.M. and Armand M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359- 367.
https://doi.org/10.1038/35104644
[10]  堵莎莎, 袁金丽, 张亚, 孙永明, 曹恒喜. 几种锂电池正极材料的发展与比较[J]. 化工中间体, 2018(11): 58-59.
[11]  刘小月, 李林峰, 杨觉明, 葛桂贤. LiFePO4正极材料的包覆层与集流体双改性研究[J]. 绵阳师范学院学报, 2018, 37(11): 24-29.
[12]  Du, Y., Yang, Z.X., Bai, L.Y., Ding, F., Jin, H., Yang, Y., et al. (2021) Si/FeSi2 Na-noparticles Prepared by Thermal Plasma with Stress-Releasing Effect for Li-Ion Storage, ChemNanoMat, 7, 467-475.
https://doi.org/10.1002/cnma.202100039
[13]  董瑞琪, 吴锋, 白莹, 吴川. 钠离子电池硬碳负极储钠机理及优化策略[J/OL]. 化学学报, 2021: 1-38.
https://kns.cnki.net/kcms/detail/31.1320.O6.20210820.1625.002.html, 2021-10-09.
[14]  Martinez-Cisneros, C., Antonelli, C., Levenfeld, B., Varez, A., Pérez-Flores, J.C., Santos-Méndez, A., et al. (2021) Non- Woven Polyaramid Porous Membranes as Separators for Li-Ion Batteries? Electrochimica Acta, 390, Article ID: 138835.
https://doi.org/10.1016/j.electacta.2021.138835
[15]  Lagadec, M.F., Zahn, R. and Wood, V. (2019) Characteriza-tion and Performance Evaluation of Lithium-Ion Battery Separators. Nature Energy, 4, 16-25.
https://doi.org/10.1038/s41560-018-0295-9
[16]  Lee, M.T. and Su, W.N. (2021) Investigation into the Develop-ment of Lithium-Ion Battery Electrolytes and Related Knowledge Transfer Using Research Paper-Based Social Network Analysis. Journal of Energy Storage, 41, Article ID: 102890.
https://doi.org/10.1016/j.est.2021.102890
[17]  胡华坤, 李新丽, 薛文东, 蒋朋, 李勇. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J/OL]. 储能科学与技术, 2021: 1-19.
https://doi.org/10.19799/j.cnki.2095-4239.2021.0295, 2021-10-09.
[18]  谢勇, 向鸿峰, 史培昌, 锂离子液体在锂金属电池中的应用[J]. 薄膜科学与技术, 2017, 34(5): 531-531.
[19]  陈仕谋, 秦虎, 刘敏. 锂离子电池电解液标准解读[J]. 储能科学与技术, 2018, 7(6): 1253-1260.
[20]  黎华玲, 陈永珍, 宋文吉, 涂小琳, 冯自平, 黄敦新, 等. 锂离子动力电池的电极材料回收模式及经济性分析[J]. 新能源进展, 2018, 6(6): 505-511.
[21]  Wang, S., Wang, C., Lai, F., Yan, F. and Yan, F. (2020) Reduction-Ammoniacal Leaching to Recycle Lithium, Cobalt, and Nickel from Spent Lithium-Ion Batteries with a Hydro Thermal Method: Effect of Reductants and Ammonium Salts. Waste Management, 102, 122-130.
https://doi.org/10.1016/j.wasman.2019.10.017
[22]  刘贵清, 王芳. 锂离子动力电池湿法回收工艺研究现状[J]. 中国资源综合利用, 2018, 36(5): 88-92.
[23]  徐建兵, 洪侃, 李忠岐, 赖耀斌, 梁鑫. 废锂离子动力电池三元正极材料回收研究进展[J]. 有色金属(冶炼部分), 2020(1): 66-72.
[24]  徐健智, 刘梦妹. 废旧锂离子电池中的有价金属的回收技术研究[J]. 化工管理, 2019(3): 194-195.
[25]  丘克强, 吴倩, 湛志华. 废弃电路板环氧树脂真空热解及产物分析[J]. 中南大学学报(自然科学版), 2009, 40(5): 1209-1215.
[26]  谢光炎, 凌云, 孙水裕. 废旧锂电池电极活性材料真空热解固氟研究[J]. 环境科学与技术, 2012, 35(2): 56-58, 158.
[27]  揭晓武, 王成彦, 李敦钫, 尹飞, 陈永强, 杨永强. 失效锂离子电池材料真空热处理及氨性浸出[J]. 环境工程学报, 2012, 6(5): 1699-1703.
[28]  王瑞春, 林玉春, 吴绍华. 锂离子二次电池阴极活性材料中金属值回收的新方法[J]. 湿法冶金技术, 2009, 99(3-4): 194-201.
[29]  Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., et al. (2018) Process for Recycling Mixed-Cathode Materials from Spentlithium-Ion Batteries and Kinetics of Leaching. Waste Management, 71, 362-371.
https://doi.org/10.1016/j.wasman.2017.10.028
[30]  Zheng, X., Gao, W., Zhang, X., He, M., Lin, X., Cao, H., et al. (2017) Spent Lithium-Ion Battery Recycling-Reductive Ammonia Leaching of Metals from Cathode Scrap by Sodium Sulphite. Waste Management, 60, 680-688.
https://doi.org/10.1016/j.wasman.2016.12.007
[31]  Bahaloo-Horeh, N. and Mousavi, S.M. (2017) Enhanced Recovery of Valuable Metals from Spent Lithium-Ion Batteries through Optimization of Organic Acids Produced by Asperilous nigher. Waste Management, 60, 666-679.
https://doi.org/10.1016/j.wasman.2016.10.034
[32]  Nayl, A.A., Hamed, M.M. and Rizk, S.E. (2015) Selective Ex-traction and Separation of Metal Values from Leach Liquor of Mixed Spent Li-Ion Batteries. Journal of the Taiwan In-stitute of Chemical Engineers, 55, 119-125.
https://doi.org/10.1016/j.jtice.2015.04.006
[33]  冯佳, 章骅, 邵立明, 何品晶. 废旧锂离子电池中钴的离子交换法回收[J]. 环境卫生工程, 2008, 16(6):1-3.
[34]  金玉健, 梅光军, 李树元. 盐析法从锂离子电池正极浸出液中回收钴盐的研究[J]. 环境科学学报, 2006, 26(7): 1122-1125.
[35]  He, L.P., Sun, S.Y. and Yu, J.G. (2018) Perfor-mance of LiNi1/3Co1/3Mn1/3O2 Prepared from Spent Lithium-Ion Batteries by a Carbonate Co-Precipitation Method. Ceramics International, 44, 351-357.
https://doi.org/10.1016/j.ceramint.2017.09.180
[36]  li, L., Bian, Y., Zhang, X., Xue, Q., Fan, E., Fan, E.,et al. (2018) Economical Recycling Process for Spent Lithium-Ion Batteries and Macro- and Micro-Scale Mechanistic Study. Journal of Power Sources, 377, 70-79.
https://doi.org/10.1016/j.jpowsour.2017.12.006
[37]  梅铭, 向黔新, 祝巧凤, 张晓. 补锂回收正极材料LiNi0.5Co0.2Mn0.3O2[J]. 电池, 2019, 49(1): 86-88.
[38]  Zhang, J., Li, X., Song, D., Miao, Y., Song, J and Zhang, L. (2018) Effective Regeneration of Anode Material Recycled from Scrapped Li-Ion Batteries. Journal of Power Sources, 390, 38-44.
https://doi.org/10.1016/j.jpowsour.2018.04.039
[39]  Li, B., Wu, C., Xu, J., Hu, D., Zhang, T., Xin, F., et al. (2020) One-Pot Red-Ox Synthesis of Grapheme from Waste Graphe of Spent Lithium-Ion Batteries with Per-Acetic Acid Assistance. Materials Chemistry and Physics, 241, Article ID: 122397.
https://doi.org/10.1016/j.matchemphys.2019.122397
[40]  Aravindan, V., Natarajan, S. and Bajaj, H.C. (2019) Template-Free Synthesis of Carbon Hollow Spheres and Reduced Grapheme Oxide from Spent Lithium-ion Batteries towards Efficient Gas Storage. Journal of Materials Chemistry A, 7, 3244-3252.
https://doi.org/10.1039/C8TA11521D
[41]  易峰, 杨晶晶, 杨博凌. 一种退役锂离子电池负极材料回收再利用方法[P]. 中国专利, CN202011486968.1. 2021-04-06.
[42]  丁森浩, 戴娣, 赵明春, 柴咏华. 回收锂离子动力电池负极材料的方法[P]. 中国专利, CN202011490234.0. 2021-04-02.
[43]  李涛, 骆艳华, 刘晨, 鲍维东. 一种从废旧锂离子电池中回收有价金属的方法[P]. 中国专利, CN202011139099.5. 2021-01-22.
[44]  周立山, 刘红光, 叶学海, 郭西凤, 刘大凡, 张洪源. 一种回收废旧锂离子电池电解液的方法[P]. 中国专利, CN201110427431.2. 2012-06-13.
[45]  童东革, 赖琼钰, 吉晓洋. 废旧锂离子电池正极材料钴酸锂的回收[J]. 化工学报, 2005, 56(10): 1967-1969.
[46]  郑学同, 陈艳丽, 魏萌, 王婧莹, 邹兆宁, 陈智栋. 一种采用超临界二氧化碳流体回收锂离子电池电解液的方法[P]. 中国专利, CN201810087260.5, 2018-07-17.
[47]  刘元龙. 碳酸酯基锂离子电池电解液超临界CO2回收及再利用研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大, 2017.
[48]  陈萍, 李慧, 马留可. 一种锂离子电池陶瓷隔膜分离回收方法[P]. 中国专利, CN201610662143.8. 2016-11-30.
[49]  周恩娄, 郭建, 张联齐. 一种从废旧锂离子电池中回收隔膜材料的方法[P]. 中国专利, CN201610031647.X. 2016-07-06.
[50]  常丽娟, 卢勇, 伍建军, 陈思竹, 吴事浪, 房瑞晓. 一种回收锂电池隔膜材料的方法[P]. 中国专利, CN202010810104.4. 2020-10-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133