全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有环网络CNC译码算法优化设计
Design of Decoding Algorithm Optimization for Cyclic Network

DOI: 10.12677/CSA.2021.1110250, PP. 2447-2458

Keywords: 卷积网络编码,容量区域,有环网络,吞吐量,时延
Convolutional Network Coding (CNC)
, Capacity Region, Cyclic Network, Throughput, Delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

卷积网络编码(CNC)译码算法汇点容量区域及译码算法已知的假设条件并不能同时成立。为此在分析有环网络CNC译码机制的基础上,指出解决CNC译码问题的关键在于初始化算法的设计和容量区域确值问题。通过简化系统状态方程,建立发送和接收序列关系表达式,区分节点是否具有重置/清零操作,差异化提出与之对应的译码算法,并推导传输矩阵满秩条件时容量区域定量表达式,并对比分析了时延、吞吐量、丢包率、控制开销等性能指标。结果表明,新算法吞吐量提高了3.2 Mbps,时延、丢包率、控制开销分别降低了37%、25%、0.9 M,验证了新算法的可行性和有效性,为进一步提高网络安全性提供了一定理论基础。
Decoding procedure of convolutional network coding (CNC) relies on multiple dimension prior information of the given network. Moreover, two assumptions, that are, known capacity region and decoding algorithm, couldn’t be established simultaneously. Therefore, after analyzing the current decoding mechanism of CNC in cyclic network, algorithm optimization should be focused on two key factors, called as initialization algorithm design and capacity region confirmation. Thus a simplified state space representation of the system was founded, which established an input-output relationship. And two differential decoding algorithms were proposed after distinguishing whether nodes have resetting/clearing operation or not. Then a quantified expression of capacity region was derived based on full rank matrix of transfer function. At last, network performance was analyzed by delay, throughput, packet loss rate and control overhead. Results show that, for the novel algorithm, throughput raises about 3.2 Mbps, delay reduces by 37%, packet loss rate decreases by 25%, and control overhead diminishes about 0.9 M, all of which prove that the proposed algorithm is feasible and efficient, providing a theoretical basis for better improving the security level of the network.

References

[1]  欧莽, 汪继文. VANETs中基于分布式TDMA的协作网络编码方法[J]. 华南理工大学学报, 2020, 48(1): 104-113.
[2]  廖勇. 基于网络编码的多跳D2D通信性能研究[D]: [硕士学位论文]. 重庆: 重庆邮电大学, 2019.
[3]  Chen, Y., Wu, E.H. and Chen, G. (2017) Bandwidth-Satisfied Multicast by Multiple Trees and Network Coding in Lossy MANETs. IEEE Systems Journal, 2, 1116-1127.
https://doi.org/10.1109/JSYST.2015.2406756
[4]  金振坤. 网络编码中优化问题研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2018.
[5]  Li, X., Jiang, T., Zhang, Q. and Wang, L. (2009) Binary Linear Multicast Network Coding on Acyclic Networks: Principles and Applications in Wireless Communication Networks. IEEE Journal on Se-lected Areas in Communications, 5, 738-748.
https://doi.org/10.1109/JSAC.2009.090614
[6]  Kumwilaisak, W. (2010) On the Decodable Probability Bound of Linear Network Coding in Acyclic Lossy Networks. Proceedings of TENCON 2010, IEEE Region 10 Conference, Fukuoka, 21-24 November 2010, 835-840.
https://doi.org/10.1109/TENCON.2010.5686574
[7]  Li, S.R. and Sun, Q.T. (2011) Network Coding Theory via Commutative Algebra. IEEE Transactions on Information Theory, 1, 403-415.
https://doi.org/10.1109/TIT.2010.2090227
[8]  Magli, E., Wang, M., Frossard, P. and Markopoulou, A. (2013) Network Coding Meets Multimedia: A Review. IEEE Transactions on Multimedia, 5, 1195-1212.
https://doi.org/10.1109/TMM.2013.2241415
[9]  Samadi Khaftari, V., Esmaeili, M. and Gulliver, T.A. (2017) Construction of MDS Convolutional Error-Correcting Network Codes over Cyclic Networks. IEEE Transactions on Communications, 6, 2305-2318.
https://doi.org/10.1109/TCOMM.2017.2680441
[10]  Li, S.Y. and Sun, Q.T. (2011) Network Coding Theory via Commutative Algebra. IEEE Transactions on Information Theory, 1, 403-415.
https://doi.org/10.1109/TIT.2010.2090227
[11]  Erez, E. and Feder, M. (2010) Efficient Network Code Design for Cyclic Networks. IEEE Transactions on Information Theory, 56, 3862-3878.
https://doi.org/10.1109/TIT.2010.2050934
[12]  Ho, T., Medard, M., Koetter, R., et al. (2006) A Random Linear Network Coding Approach to Multicast. IEEE Transactions on Information Theory, 10, 4413-4430.
https://doi.org/10.1109/TIT.2006.881746
[13]  Guo, W., Cai, N. and Sun, Q.T. (2012) Time Variant Decoding of Convolutional Network Codes. Communications Letters, 16, 1656-1659.
https://doi.org/10.1109/LCOMM.2012.080312.120789
[14]  Guo, W., Shi, X., Cai, N. and Medard, M. (2013) Localized Dimension Growth: A Convolutional Random Network Coding Approach to Managing Memory and Decod-ing Delay. IEEE Transactions on Communications, 61, 3894-3905.
https://doi.org/10.1109/TCOMM.2013.071013.120857
[15]  弋改珍. 网络编码理论研究综述[J]. 无线互联科技, 2019, 16(8): 35-36, 50.
[16]  Etzion, T. and Wachter Zeh, A. (2018) Vector Network Coding Based on Subspace Codes Outperforms Scalar Linear Network Coding. IEEE Transactions on Information Theory, 4, 2460-2473.
https://doi.org/10.1109/TIT.2018.2797183
[17]  Lin, S., Fu, L., Xie, J. and Wang, X. (2016) Hybrid Network Coding for Unbalanced Slotted ALOHA Relay Networks. IEEE Transactions on Wireless Communications, 1, 298-313.
https://doi.org/10.1109/TWC.2015.2472409
[18]  Van Eeghem, F., S?rensen, M. and De Lathauwer, L. (2017) Tensor Decompositions with Several Block-Hankel Factors and Application in Blind System Identification. IEEE Trans-actions on Signal Processing, 65, 4090-4101.
https://doi.org/10.1109/TSP.2017.2695445
[19]  Hanna, M.T. (2017) A Discrete Fractional Hankel Transform Based on the Eigen Decomposition of a Symmetric Kernel Matrix of the Discrete Hankel Transform. Proceedings of 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, 6-9 August 2017, 479-482.
https://doi.org/10.1109/MWSCAS.2017.8052964
[20]  Yeung, R.W. (2008) Information Theory and Network Coding. Springer, Berlin.
[21]  Feng, W., Luo, H., Sun, B., et al. (2017) Performance Analysis of Sliding Window Network Coding for Energy Efficient in MANETs. Proceedings of 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Macau, 21-23 July 2017, 219-222.
https://doi.org/10.1109/ICEIEC.2017.8076548

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133