|
电化学及光电化学传感器检测胱抑素C的研究进展
|
Abstract:
胱抑素C是一种由有核细胞合成的碱性低分子量蛋白,相比肌酐而言,胱抑素C能够更加敏感地反映肾脏受损情况,尤其在CKDI、II时期。现存的胱抑素C临床检测方法,因价格昂贵、操作复杂、灵敏度低等原因在临床受限。但近几年兴起的电化学、光电化学传感器体系检测胱抑素C,有效地弥补了以往的检测缺陷,且能达到床旁快速检测的目标,本文就电化学、光电化学传感器体系检测胱抑素C的研究进行综述。
Cystatin C is an alkaline low-molecular-weight protein synthesized by nucleated cells. Compared with creatinine, cystatin C is more sensitive to renal damage, especially in CKD stages I and II. Existing cystatin C clinical detection methods are limited due to high cost, complex operation and low sensitivity. However, in recent years, the emergence of electrochemical and photoelectric sensor systems to detect cystatin C has effectively made up for the defects of the previous detection, and can achieve the goal of rapid detection near the bed. This paper reviews the research on the detection of cystatin C by electrochemical and photoelectric sensor systems.
[1] | Noraddin, F.H., Flodin, M., Fredricsson, A., Sohrabian, A. and Larsson, A. (2012) Measurement of Urinary Cystatin C with a Particle-Enhanced Turbidimetric Immunoassay on Architect Ci8200. Journal of Clinical Laboratory Analysis, 26, 358-364. https://doi.org/10.1002/jcla.21531 |
[2] | 康娟. 以半胱氨酸蛋白酶抑制剂C为例介绍蛋白质量值传递标准化方法[J]. 检验医学, 2016, 31(12): 1081-1086. |
[3] | 王丽华, 张颖, 江浩, 徐晓东. 血清胱抑素C水平与冠心病病变程度及预后的相关性研究[J]. 中国医学前沿杂志(电子版), 2018, 10(8): 38-42. |
[4] | 吴惠兰, 毛春芬, 陈晓君. 联合检测血清降钙素原、血清前白蛋白和视黄醇结合蛋白对脓毒血症早期诊断的价值[J]. 中国医师进修杂志, 2019, 42(12): 1093-1096. |
[5] | 周恩武, 李明, 刘跃平, 江志红. 血清胱抑素C测定的临床意义及方法学研究进展[J] . 现代中西医结合杂志, 2014, 23(12): 1367-1368. |
[6] | Mathews, P.M. and Levy, E. (2016) Cystatin C in Aging and in Alzheimer’s Disease. Ageing Research Reviews, 32, 38-50. https://doi.org/10.1016/j.arr.2016.06.003 |
[7] | Dharnidharka, V.R., Kwon, C. and Stevens, G. (2002) Serum Cystatin C Is Superior to Serum Creatinine as a Marker of Kidney Function: A Meta-Analysis. American Journal of Kidney Diseases, 40, 221-226.
https://doi.org/10.1053/ajkd.2002.34487 |
[8] | Martone, A.M., Bianchi, L., Abete, P., Bellelli, G., Bo, M., Cherubini, A., et al. (2017) The Incidence of Sarcopenia among Hospitalized Older Patients: Results from the Glisten Study. Journal of Cachexia, Sarcopenia and Muscle, 8, 907-914. https://doi.org/10.1002/jcsm.12224 |
[9] | Iacomelli, I., Giordano, A., Rivasi, G., Rafanelli, M., Tortù, V., Cartei, A., et al. (2021) Low Creatinine Potentially Overestimates Glomerular Filtration Rate in Older Fracture Patients: A Plea for an Extensive Use of Cystatin C? European Journal of Internal Medicine, 84, 74-79. https://doi.org/10.1016/j.ejim.2020.06.016 |
[10] | Nakhjavan-Shahraki, B., Yousefifard, M., Ataei, N., Baikpour, M., Ataei, F., Bazargani, B., et al. (2017) Accuracy of Cystatin C in Prediction of Acute Kidney Injury in Children; Serum or Urine Levels: Which One Works Better? A Systematic Review and Meta-Analysis. BMC Nephrology, 18, Article No. 120.
https://doi.org/10.1186/s12882-017-0539-0 |
[11] | Grasselli, C., Barbati, A., Cesarini, L., Pellegrino, R. and Di Renzo, G.C. (2021) The Validation of Immunoblot SDS-PAGE as a Qualitative and Quantitative Method for the Determination of Urinary Cystatin C in Neonates. Clinical Biochemistry, 87, 52-59. https://doi.org/10.1016/j.clinbiochem.2020.10.005 |
[12] | 刘明帅. 利用光电化学传感器检测糖类及其与蛋白的相互作用[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2014. |
[13] | 曹卓松, 孙飞龙, 李辰宇, 杨晓波, 王尚, 薛斌, 等. 电化学生物传感器及其检测大肠杆菌的研究[J]. 食品研究与开发, 2021, 42(10): 193-197. |
[14] | 王纯. 电化学生物传感器在细菌病原体检测中的应用及发展趋势[J]. 卫生研究, 2021, 50(1): 168-172. |
[15] | Trindade, E.K.G., Silva, B.V.M. and Dutra, R.F. (2019) A Probeless and Label-Free Electrochemical Immunosensor for Cystatin C Detection Based on Ferrocene Functionalized-Graphene Platform. Biosensors and Bioelectronics, 138, Article ID: 111311. https://doi.org/10.1016/j.bios.2019.05.016 |
[16] | Cho, I.H., Lee, J., Kim, J., Kang, M.-S., Paik, J.K., Ku, S., et al. (2018) Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors, 18, Article No. 207. https://doi.org/10.3390/s18010207 |
[17] | Yamanaka, K., Vestergaard, M.C. and Tamiya, E. (2016) Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. Sensors, 16, Article No. 1761. https://doi.org/10.3390/s16101761 |
[18] | 史艳梅, 张茜, 张俊霞, 李秀敏, 苗明三. 基于石墨烯-金纳米粒子复合材料的黄芩苷电化学传感器的构建及应用[J]. 分析科学学报, 2021, 37(3): 312-326. |
[19] | Devi, K.S.S. and Krishnan, U.M. (2020) Microfluidic Electrochemical Immunosensor for the Determination of Cystatin C in Human Serum. Microchimica Acta, 187, Article No. 585. https://doi.org/10.1007/s00604-020-04503-4 |
[20] | 王丹丹. 半导体纳米线阵列三相界面构建及光电化学生物传感研究[D]: [博士学位论文]. 苏州: 苏州大学, 2020. |
[21] | Zhao, W.-W., Xu, J.-J. and Chen, H.-Y. (2015) Photoelectrochemical Bioanalysis: The State of the Art. Chemical Society Reviews, 44, 729-741. https://doi.org/10.1039/C4CS00228H |
[22] | Mi, L., Wang, P., Yan, J., Qian, J., Lu, J., Yu, J., et al. (2016) A Novel Photoelectrochemical Immunosensor by Integration of Nanobody and TiO2 Nanotubes for Sensitive Detection of Serum Cystatin C. Analytica Chimica Acta, 902, 107-114. https://doi.org/10.1016/j.aca.2015.11.007 |
[23] | Bargnoux, A.S., Azoury, V., Badiou, S., Klouche, K., Plawecki, M., Kuster, N., et al. (2019) Analytical Performances of PENIA and PETIA Urinary Cystatin C Determination Allow Tubular Injury Investigation. Annals of Clinical Biochemistry, 56, 228-231. https://doi.org/10.1177/0004563218816341 |
[24] | Sukhanova, A., Even-Desrumeaux, K., Kisserli, A., Tabary, T., Reveil, B., Millot, J.-M., et al. (2012) Oriented Conjugates of Single-Domain Antibodies and Quantum Dots: Toward a New Generation of Ultrasmall Diagnostic Nanoprobes. Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 516-525.
https://doi.org/10.1016/j.nano.2011.07.007 |