全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气化渣粒径与添加比例对复混肥养分浸水释放的影响
Effects of Particle Size of Gasification Residue and Addition Ratio on Nutrient Release of Compound Fertilizer by Immersion

DOI: 10.12677/HJAS.2021.1111134, PP. 996-1004

Keywords: 气化渣,复混肥,浸水试验,养分释放
Gasification Residue
, Compound Fertilizer, Immersion Test, Nutrient Release

Full-Text   Cite this paper   Add to My Lib

Abstract:

为筛选特定的气化渣粒径和气化渣与化肥的比例,制作功能型高效气化渣复混肥,在实验室开展浸水试验,研究大颗粒(1.00~0.50 mm, B)、中颗粒(0.50~0.25 mm, M)、小颗粒(0.25~0.15 mm, S)气化渣粒径与气化渣添加15%、30%、45%比例对复混肥氮磷钾释放的影响。结果表明,浸水48 h时,与大颗粒、中颗粒相比,小颗粒的铵态氮释放率分别降低了2.87%、0.02%,磷素释放率分别降低了16.88%、12.46%,钾素释放率分别降低了0.52%、0.79%。浸水48 h时,15%处理与30%处理,45%处理的铵态氮释放率相比分别降低了4.45%、3.93%,磷素释放率分别降低了51.39%、24.64%,钾素释放率分别降低了9.12%、10.01%。且15%处理的氮磷钾释放率与30%和45%处理分别相比有显著性差异。因此粒径和添加比例对复混肥养分释放都有影响。在相同气化渣添加比例(15%)下,气化渣粒径为0.50~0.25 mm复混肥对肥料中的氮磷钾释放延缓效果比气化渣粒径为1.00~0.50 mm和0.25~0.15 mm的复混肥更好。在相同气化渣粒径(0.50~0.25 mm)下,气化渣添加比例为15%时对养分的释放延缓效果最好,添加比例为45%次之,添加比例为30%最差。
In order to select the specific particle size of gasification slag and the ratio of gasification slag to chemical fertilizer, the functional high efficiency gasification slag compound fertilizer was prepared. The immersion test was carried out in the laboratory to study the large particles (1.00~0.50 mm, B), medium particles (0.50~0.25 mm, M), small particles (0.25~0.15 mm, S) Effect of gasification slag particle size and proportion of 15%, 30% and 45% addition of gasification slag on NPK release of compound fertilizer. The results showed that when immersed for 48 h, the release rate of ammonium nitrogen, phosphorus and potassium of small particles decreased by 2.87% and 0.02%, 16.88% and 12.46%, respectively, compared with that of large and medium particles, respectively. After soaking for 48 h, the release rate of ammonium nitrogen, phosphorus and potassium in 15% treatment decreased by 4.45% and 3.93%, 51.39% and 24.64%, respectively, compared with 30% and 45% treatment, respectively. Moreover, the NPK release rate of 15% treatment was significantly different from that of 30% and 45% treatment, respectively. Therefore, particle size and addition proportion have influence on nutrient release of compound fertilizer. Under the same proportion of gasification slag (15%), the compound fertilizer with gasification slag particle size of 0.50~0.25 mm had better retarded effect on NPK release than that with gasification slag particle size of 1.00~0.50 mm and 0.25~0.15 mm. Under the same gasification slag particle size (0.50~0.25 mm), the addition proportion of 15% gasification slag had the best delaying effect on the release of nutrients, followed by 45%, and the worst was 30%.

References

[1]  胡俊阳. 北方某煤气化炉渣的综合利用研究[D]: [硕士学位论文]. 绵阳: 西南科技大学, 2018.
[2]  Wu, S.Y., Huang, S., Wu, Y.Q. and Gao, J.S. (2015) Characteristics and Catalytic Actions of Inorganic Constituents from En-trained-Flow Coal Gasification Slag. Journal of the Energy Institute, 88, 93-103.
https://doi.org/10.1016/j.joei.2014.04.001
[3]  Wu, S.Y., Huang, S., Ji, L.Y., Wu, Y.Q. and Gao, J.S. (2014) Structure Characteristics and Gasification Activity of Residual Carbon from Entrained-Flow Coal Gasification Slag. Fuel, 122, 67-75.
https://doi.org/10.1016/j.fuel.2014.01.011
[4]  商晓甫, 游洋洋, 周金倩, 张诚, 朱琳, 霍宁, 马建立. 煤气化渣利用技术研究现状及应用趋势浅析[C]//中国环境科学学会. 2016中国环境科学学会学术年会论文集(第三卷). 海口: 中共环境科学学会, 2016: 823-826.
[5]  曲江山, 张建波, 孙志刚, 杨晨年, 史达, 李少鹏, 李会泉. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193.
[6]  张婷, 于露, 李宇, 高艳鹏, 孙丽娅, 刘乐, 易汉平, 张弦. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究, 2020(19): 88-90.
[7]  盛羽静. 气流床气化灰渣的理化特性研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2017.
[8]  刘开平, 赵红艳, 李祖仲, 关羽, 汤卓群, 陈骞. 煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报, 2017, 34(5): 190-195.
[9]  李宝霞, 张济宇. 无烟粉煤催化气化碱渣煅烧脱碱制取硅肥[J]. 华中科技大学学报(自然科学版), 2007, 35(11): 128-132.
[10]  史兆臣, 戴高峰, 王学斌, 董永胜, 李攀, 于伟, 谭厚章. 煤气化细渣的资源化综合利用技术研究进展[J]. 华电技术, 2020, 42(7): 63-73.
[11]  Xu, J.Q., Yu, R.L., Dong, X.-Y., Hu, G.-R., Shang, X.-S., Wang, Q. and Li, H.-W. (2012) Effects of Municipal Sewage Sludge Stabilized by Fly Ash on the Growth of Manilagrass and Transfer of Heavy Metals. Journal of Hazardous Materials, 217-218, 58-66.
https://doi.org/10.1016/j.jhazmat.2012.02.065
[12]  Zhu, D.D., Miao, S.D., Xue, B., Jiang, Y.S. and Wei, C.D. (2019) Effect of Coal Gasification Fine Slag on the Physicochemical Properties of Soil. Water, Air, & Soil Pollution, 230, 155.
https://doi.org/10.1007/s11270-019-4214-x
[13]  姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2018.
[14]  陈晓群, 孙玉芳, 罗健航, 张学军. 农田水中铵态氮测定方法比较[J]. 宁夏农林科技, 2010(3): 26-27.
[15]  刘振法, 郭茹辉, 张利辉, 李冬, 付翠轻. 磷钒钼黄比色法测定水处理剂中总磷含量[J]. 环境工程, 2004, 22(6): 74-75+5.
[16]  马丽慧, 王彦华. 原子吸收火焰发射法测定水中钾离子含量[J]. 中国石油和化工标准与质量, 2017, 37(7): 37-38.
[17]  孙克刚, 黄绍敏. 大豆施用粉煤灰磁化肥最佳用量及增产效果研究[J]. 粉煤灰综合利用, 2003(5): 12-13.
[18]  夏文. 沸石与化肥制成复混肥减少无效施肥的高昂成本[J]. 化工管理, 2016(4): 53-54.
[19]  康日峰, 张乃明, 史静, 包立, 张传光. 生物炭基肥料对小麦生长、养分吸收及土壤肥力的影响[J]. 中国土壤与肥料, 2014(6): 33-38.
[20]  刘娜, 李强, 孙利鹏, 张凯煜, 亢福仁. 增施养分对复配气化渣-沙土的激发效应研究[J]. 榆林学院学报, 2021, 31(2): 28-31.
[21]  潘婵婵. 气流床煤气化灰渣的特性研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2014.
[22]  李正秋, 黄欢, 崔艳杰, 等. 利用煤泥研制具有肥效的生态缓释材料[J]. 应用化工, 2011, 40(11): 1929-1931.
[23]  郭军康, 任倩, 赵瑾, 李永涛, 林雁冰, 丑敏霞. 生物炭与腐殖酸复配对油菜(Brassica campestris L.)生长与镉累积的影响[J]. 生态环境学报, 2019, 28(12): 2425-2432.
[24]  刘大锐, 朱丹丹. 煤气化渣对磷酸根的吸附与解吸性能研究[J]. 无机盐工业, 2021, 53(2): 84-87+104.
[25]  马超, 王兵, 樊盼盼, 严晓辉, 鲍卫仁, 常丽萍, 王建成. 煤气化渣基氨氮吸附剂的制备及吸附性能研究[J]. 洁净煤技术, 2021, 27(3): 109-115.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133