全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续型Hopfield神经网络在无人机路径规划中的应用
Application of Continuous Hopfield Neural Network in UAV Path Planning

DOI: 10.12677/CSA.2021.1111275, PP. 2718-2724

Keywords: 神经网络,能量函数,路径优化
Neural Network
, Energy Function, Path Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

路径优化问题是智能运输领域中的核心问题,合理的路径能有效提高运输效率,节约时间成本。基于对连续型和离散型的Hopfield神经网络特点进行分析,设计了一种基于连续型的Hopfield神经网络的路径规划方法,用于无人机路线规划。首先对神经网络的结构进行了说明,其次引入能量函数,用于定义神经网络的稳定性。再将目标函数映射为能量函数,将问题的变量对应到神经元的状态,那么当能量函数趋于最小值时,目标函数的最优解便随即得出。最后对案例进行仿真实验,得出最优解,验证了该方法的有效性和实用性。
Path optimization is the core problem in the field of intelligent transportation. A reasonable path can effectively improve transportation efficiency and save time and cost. Based on the analysis of the characteristics of continuous Hopfield neural network and discrete Hopfield neural network, a path planning method based on continuous Hopfield neural network is designed for UAV route planning. Firstly, the structure of neural network is explained. Secondly, the energy function is introduced to define the stability of neural network. And then map the objective function to the energy function, and correspond the variable of the problem to the state of the neuron. When the value of the energy function tends to the minimum, the optimal solution of the objective function is obtained immediately. Finally, the optimal solution is obtained through the simulation of an example, the results show that the proposed method is effective and practical.

References

[1]  秦奋, 姚红芳, 马蔡国, 张俊婷, 倪涛, 许金彤. 基于Dijkstra算法的电线路人工巡检优化方法[J]. 浙江电力, 2021, 40(6): 49-53.
[2]  刘臣宇, 孙伟奇, 李卫灵. Dijkstra标号法在直送式配送运输问题中的应用[J]. 物流科技, 2021, 44(7): 90-91.
[3]  蔡明杰, 朱希安, 刘德民, 王占刚. 基于优化SPFA算法的矿井突水救援模型[J]. 煤田地质与勘探, 2019, 47(6): 78-83.
[4]  董箭, 初宏晟, 卢杬樟, 唐露露, 戴佳良. 基于A星算法的无人机路径规划优化模型研究[J]. 海洋测绘, 2021, 41(3): 28-31+51.
[5]  易小泉. 出租车最优路径Floyd算法求解[J]. 计算机产品与流通, 2020(6): 134-136.
[6]  汪欣, 王广东. 基于神经网络的部队投送路径优化方法研究[J]. 国防交通工程与技术, 2021, 19(2): 9-14.
[7]  薛建彬, 常鑫亮. 基于Hopfield神经网络的UWSNs移动信标路径规划[J]. 传感器与微系统, 2020, 39(4): 35-38+42.
[8]  马芝云. Hopfield网络串行和并行两种运行方式的收敛性实验[D]: [硕士学位论文]. 大连: 大连理工大学, 2021.
[9]  Hopfield, J. and Tank, D.W. (1985) Neural Computation of Decision in Decision in Optimization Problems. Biological Cybernetics, 52, 141-152.
[10]  吴高航. Hopfield神经网络解TSP问题及能量函数参数分析[J]. 现代计算机(专业版), 2016(9): 9-12.
[11]  陈晨, 茅健. 基于连续Hopfield神经网络的立体库路径优化[J]. 物流科技, 2019, 42(1): 162-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133