全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

精氨酸–谷氨酸–天冬氨酸–缬氨酸改性丝素导管的制备及性能研究
Study on Preparation and Performance of Arg-Glu-Asp-Val Modified Silk Fibroin Tube

DOI: 10.12677/BP.2021.114014, PP. 123-133

Keywords: 丝素导管,多巴胺改性,多肽修饰,神经再生
Silk Fibiroin
, Dopamine Modification, Peptide Modified, Nerve Regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:制备由REDV多肽修饰且具沟槽结构的丝素蛋白支架。方法:在含有30微米沟槽结构的PDMS膜上制备丝素薄膜,卷成管。通过多巴胺改性在丝素移植物表面共价连接REDV多肽进行修饰。扫描电镜观察其内表面微观形貌,电子万能试验机(TFW-58)检测REDV多肽修饰的丝素蛋白支架力学性能的改变。将RSC96细胞种植在丝素蛋白支架内表面1-3 d,观察丝素蛋白质支架内表面的沟槽结构对细胞趋向生长的影响。使用CCK-8 (cell counting Kit-8)测定法检测RSC96细胞在丝素移植物表面的增殖情况。采用SD大鼠制备坐骨神经损伤模型,分别用丝素导管(SF)、具沟槽丝素导管(TOPOLOGY)、REDV多肽修饰丝素导管(REDV)、REDV修饰且具沟槽结构丝素导管(TOPOLOGY/REDV)进行桥接修复。术后12 w测量靶肌湿重比、移植段坐骨神经纵切免疫荧光染色。结果:扫描电镜观察,TOPOLOGY组及TOPOLOGY/REDV组均具有均一的沟槽结构;力学测试结果表明REDV多肽修饰的丝素蛋白支架力学性能有所改善;RSC96细胞与丝素移植物共培养发现移植物表面沟槽结构对于细胞的趋向生长具有引导作用;CCK-8细胞活力检测表明REDV多肽修饰的丝素蛋白支架较单纯的丝素蛋白支架而言生物相容性有所改善;术后12 w靶肌恢复湿重比及坐骨神经纵切免疫荧光染色结果表明REDV多肽修饰且具沟槽结构的丝素蛋白支架对于细胞的吸附生长、损伤神经的修复具有促进作用。结论:REDV多肽修饰且具沟槽结构的丝素蛋白支架具有良好的生物相容性,对于细胞的粘附及趋向生长具有促进作用,为丝素蛋白在神经损伤再生领域提供了新的应用。
Purpose: To prepare a silk fibroin scaffold with grooved structure modified by REDV polypeptide. Method: A silk fibroin film was prepared on a PDMS film containing a 30-micron groove structure and rolled into a tube. The REDV polypeptide is covalently attached to the surface of the silk fibroin graft for modification by dopamine modification. Scanning electron microscope was used to observe the micro morphology of the inner surface, and the electronic universal test (TFW-58) machine was used to detect the changes in the mechanical properties of the silk fibroin scaffold modified with REDV polypeptide. RSC96 cells were planted on the inner surface of the silk fibroin scaffold for 1 - 3 days, and the influence of the groove structure on the inner surface of the silk fibroin scaffold on cell growth was observed. CCK-8 (cell counting Kit-8) assay was used to detect the proliferation of RSC96 cells on the surface of silk fibroin grafts. SD rats were used to prepare sciatic nerve injury models. Silk fibroin catheters (SF), grooved silk fibroin catheters (TOPOLOGY), REDV polypeptide modified silk fibroin catheters (REDV), REDV modified silk fibroin catheters with grooved structure (TOPOLOGY/REDV) were used to perform bridge repair. 12 weeks after the operation, the target muscle wet weight ratio and the longitudinal section of the transplanted sciatic nerve were measured by immunofluorescence staining. Results: Scanning electron microscopy showed that both the TOPOLOGY group and the TOPOLOGY/REDV group had a uniform groove structure; the mechanical test results showed that the mechanical properties of the silk fibroin scaffold modified with REDV polypeptides had been improved; RSC96 cells and silk fibroin grafts were co-cultured, and it was found that the groove structure on the surface of

References

[1]  顾玉东. 提高周围神经损伤的诊治水平[J]. 中华创伤骨科杂志, 2003, 5(1): 1-4.
[2]  Kornfeld, T., Vogt, P.M. and Radtke, C. (2019) Nerve Grafting for Peripheral Nerve Injuries with Extended Defect Sizes. Wiener Medizinische Wochenschrift, 169, 240-251.
https://doi.org/10.1007/s10354-018-0675-6
[3]  陈勇, 范林, 付贞, 等. 神经导管支架修复外周神经损伤的研究与现状[J]. 中国组织工程研究, 2017, 21(30): 4901-4907.
[4]  Ray, W.Z. and Mackinnon, S.E. (2010) Management of Nerve Gaps: Autografts, Allografts, Nerve Transfers, and End-to-Side Neu-rorrhaphy. Experimental Neurology, 223, 77-85.
https://doi.org/10.1016/j.expneurol.2009.03.031
[5]  Sinis, N., Schaller, H.E., Schulte-Eversum, C., et al. (2006) Nerve Regeneration across a 2-cm Gap in the Rat Median Nerve Using a Resorbable Nerve Conduit Filled with Schwann Cells. Journal of Reconstructive Microsurgery, 22, 1067-1076.
https://doi.org/10.1055/s-2006-949709
[6]  刘世清, 李皓桓, 彭昊. 吡咯喹啉醌充填导管诱导外周神经再生的实验研究[J]. 中华显微外科杂志, 2005, 28(2): 145-147.
[7]  Meek, M.F., Robinson, P.H., Stokroos, I., et al. (2001) Electronmicroscopical Evaluation of Short-Term Nerve Regeneration through a Thin-Walled Biodegradable Poly(DLLA-epsilon-CL) Nerve Guide Filled with Modified Denatured Muscle Tissue. Biomaterials, 22, 1177-1185.
https://doi.org/10.1016/S0142-9612(00)00340-9
[8]  Nguyen, T.P., Nguyen, Q.V., Nguyen, V.H., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers (Basel), 11, 1933.
https://doi.org/10.3390/polym11121933
[9]  Vepari, C. and Kaplan, D.L. (2007) Silk as a Biomaterial. Progress in Polymer Science, 32, 991-1007.
https://doi.org/10.1016/j.progpolymsci.2007.05.013
[10]  Ku, S.H. and Chan, B.P. (2010) Human Endothelial Cell Growth on Mussel-Inspired Nanofiber Scaffold for Vascular Tissue Engineering. Biomaterials, 31, 9431-9437.
https://doi.org/10.1016/j.biomaterials.2010.08.071
[11]  Ku, S.H., Lee, J.S. and Park, C.B. (2010) Spatial Control of Cell Adhesion and Patterning through Mussel-Inspired Surface Modification by Polydopamine. Langmuir the Acs Jour-nal of Surfaces & Colloids, 26, 15104-15108.
https://doi.org/10.1021/la102825p
[12]  Waite, H.J. (2008) Surface Chemistry: Mussel Power. Nature Materials, 7, 8-9.
https://doi.org/10.1038/nmat2087
[13]  Lee, H., Scherer, N.F. and Messersmith, P.B. (2006) Single-Molecule Mechanics of Mussel Adhesion. Proceedings of the National Academy of Sciences of the United States of America, 103, 12999-13003.
https://doi.org/10.1073/pnas.0605552103
[14]  Lee, J.J., Park, I.S. and Shin, G. (2014) Effects of Polydopamine Coating on the Bioactivity of Titanium for Dental Implants. International Journal of Precision Engineering & Manufac-turing, 15, 1647-1655.
https://doi.org/10.1007/s12541-014-0515-6
[15]  Castellanos, M.I.Z., et al. (2015) Biofunctionalization of REDV Elastin-Like Recombinamers Improves Endothelialization on CoCr Alloy Surfaces for Cardiovascular Applications. Col-loids & Surfaces B Biointerfaces, 127, 22-32.
https://doi.org/10.1016/j.colsurfb.2014.12.056
[16]  Panitch, A., Yamaoka, T., Fournier, M.J., et al. (1999) Design and Biosynthesis of Elastin-Like Artificial Extracellular Matrix Proteins Containing Periodically Spaced Fibronectin CS5 Domains. Macromolecules, 32, 1701-1703.
https://doi.org/10.1021/ma980875m
[17]  Gu, X., Ding, F., Yang, Y., et al. (2011) Construction of Tissue Engi-neered Nerve Grafts and Their Application in Peripheral Nerve Regeneration. Progress in Neurobiology, 93, 204-230.
https://doi.org/10.1016/j.pneurobio.2010.11.002
[18]  Noble, J., Munro, C., Prasad, V., et al. (1998) Analysis of Upper and Lower Extremity Peripheral Nerve Injuries in a Population of Patients with Multiple Injuries. The Journal of Trauma, 45, 116-122.
https://doi.org/10.1097/00005373-199807000-00025
[19]  Li, R., Liu, Z., Pan, Y., et al. (2014) Peripheral Nerve Injuries Treatment: A Systematic Review. Cell Biochemistry & Biophysics, 68, 449.
https://doi.org/10.1007/s12013-013-9742-1
[20]  Mozafari, R. (2018) Combination of Heterologous Fibrin Sealant and Bioengineered Human Embryonic Stem Cells to Improve Regeneration Following Autogenous Sciatic Nerve Graft-ing Repair. Journal of Venomous Animals and Toxins Including Tropical Diseases, 24, Article No. 11.
https://doi.org/10.1186/s40409-018-0147-x
[21]  Kundu, S.C., Dash, B.C., Dash, R., et al. (2008) Natural Protec-tive Glue Protein, Sericin Bioengineered by Silkworms: Potential for Biomedical and Biotechnological Applications. Progress in Polymer Science, 33, 998-1012.
https://doi.org/10.1016/j.progpolymsci.2008.08.002
[22]  刘子儒, 张甜. 聚多巴胺改性聚合物在神经修复中的研究进展[J]. 中国生物工程杂志, 2020, 40(10): 57-64.
[23]  刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2): 212-219.
[24]  Zhang, L., Xu, L., Li, G., et al. (2019) Fabrication of High-Strength Mecobalamin Loaded Aligned Silk Fibroin Scaffolds for Guiding Neuronal Orientation. Colloids & Sur-faces B Biointerfaces, 173, 689-697.
https://doi.org/10.1016/j.colsurfb.2018.10.053

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133