|
Botanical Research 2021
ALS以及ALS抑制剂类除草剂的研究进展
|
Abstract:
使用除草剂是根除作物田里杂草的有效方法,其中以乙酰乳酸合成酶(acetolactate synthetase, ALS)为靶标的除草剂在杂草防治方面有很好的应用价值。本文对乙酰乳酸合成酶的结构、ALS抑制剂类除草剂种类、抗除草剂植物抗性机理、抗ALS抑制剂类除草剂作物的研究进展进行了综合概括。
The use of herbicides is an effective method to eradicate weeds in crop fields, among which the herbicides targeted by acetolactate synthetase (ALS) are of great value in weed control. In this paper, research progress of the structure of acetolactate synthetase, the types of ALS inhibitor herbicides, the mechanism of herbicide resistance, and crops of herbicide resistant to ALS inhibitors were summarized.
[1] | Umbarger, H.E. and Brown, B. (1958) Isoleucine and Valine Metabolism in Escherichia coli VIII. The Formation of Acetolactate. Journal of Biological Chemistry, 233, 1156-1160. https://doi.org/10.1016/S0021-9258(19)77358-X |
[2] | Chipman, D., Barak, Z. and Schloss, J.V. (1998) Biosynthesis of 2-Aceto-2-Hydroxy Acids: Acetolactate Synthases and Acetohydroxyacid Synthases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1385, 401-419. https://doi.org/10.1016/S0167-4838(98)00083-1 |
[3] | 黄新发. 除草剂靶标乙酰乳酸合成酶对抑制剂敏感性及其分子机理的初步研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2003. |
[4] | Duggleby, R.G. (2006) Domain Relationships in Thiamine Diphosphate-Dependent Enzymes. Accounts of Chemical Research, 39, 550-557. https://doi.org/10.1021/ar068022z |
[5] | 宋贵生, 冯德江, 等. 水稻乙酰乳酸合成酶基因的克隆和功能分析[J]. 中国农业科技导报, 2007, 9(3): 66-72. |
[6] | Andrews, T.J. and Whitney, S.M. (2003) Manipulating Ribulose Bisphosphate Carboxylase/Oxygenase in the Chloroplasts of Higher Plants. Archives of Biochemistry and Biophysics, 414, 159-169.
https://doi.org/10.1016/S0003-9861(03)00100-0 |
[7] | Hasson, M.S. and Muscate, A. (1998) The Crystal Structure of Benzoylformate Decarboxylase at 1.6 ? Resolution: Diversity of Catalytic Residues in Thiam Indiphosphate-Dependent Enzyme. Biochemistry, 37, 9918-9930.
https://doi.org/10.1021/bi973047e |
[8] | Pang, S.S., Duggleby, R.G. and Guddat, L.W. (2002) Crystal Structure of Yeast Acetohydroxyacid Synthase: A Target for Herbicidal Inhibitors. Journal of Molecular Biology, 317, 249-262. https://doi.org/10.1006/jmbi.2001.5419 |
[9] | McCourt, J.A. and Duggleby, R.G. (2006) Acetohydroxyacid Synthase and Its Role in the Biosynthetic Pathway for Branched-Chain Amino Acids. Amino Acids, 31, 173-210. https://doi.org/10.1007/s00726-005-0297-3 |
[10] | 郑培忠, 沈健英. 新型乙酰乳酸合成酶(ALS)抑制剂作用机理的研究进展[J]. 杂草科学, 2009(2): 1-2. |
[11] | Hawkins, C.F. and Borges, A. (1989) A Common Structural Motif in Thiamin Pyrophosphate-Binding Enzymes. FEBS Letters, 204, 430-434. |
[12] | Lawther, R.P. and Nichols, B. (1979) The Nucleotide Sequence Preeeding and Including of the ilvE Gene of the ilvGEDA Operon of Esehierchia coli K12. Nucleic Aeids Research, 7, 2289-2301. https://doi.org/10.1093/nar/7.8.2289 |
[13] | Falco, S.C. and Dumas, K.S. (1985) Genetic Analysis of Mutants of Saccharomyces cerevisiae Resistant to the Herbicide Sulfometuron Methyl. Genetics, 109, 21-35. https://doi.org/10.1093/genetics/109.1.21 |
[14] | Mourad, G., Pandey, B. and King, J. (1993) Isolation and Genetic Analysis of a Triazolopyrimidine-Resistant Mutant of Arabidopsis. Journal of Heredity, 84, 91-96. https://doi.org/10.1093/oxfordjournals.jhered.a111307 |
[15] | Wiersma, P.A., Schmiemann, M.G., Condie, J.A., et al. (1989) Isolation, Expression and Phylogenetic Inheritance of an Acetolactate Synthase Gene from Brassica napus. Molecular and General Genetics MGG, 219, 413-420.
https://doi.org/10.1007/BF00259614 |
[16] | 李汝刚, Mcferso, J.R., Kresovich, S. 乙酰乳酸合成酶基因在芸苔属栽培种内的遗传变异[J]. 生物多样性, 1998, 6(1): 6-12. |
[17] | 郑培忠, 沈健英. 乙酰乳酸合成酶抑制剂的种类及其耐药性研究进展[J]. 杂草科学, 2009(2): 5-6. |
[18] | 苏少泉. 靶标ALS除草剂品种的开发与问题[J]. 农药译丛, 1994, 16(4): 17-24. |
[19] | 张一宾. 抑制乙酰乳酸合成酶(ALS)除草剂世界市场及品种发展概述[J]. 现代农药, 2005, 4(6): 28-31. |
[20] | 苏少泉. 新的ALS抑制剂——嘧啶水杨酸类除草剂[J]. 农药译丛, 1997, 19(3): 14-18. |
[21] | 苏少泉. 新的乙酰乳酸合成酶抑制剂——磺酰胺类除草剂[J]. 农药译丛, 1997, 19(5): 21-22. |
[22] | Lyu, J.Y., Huang, Q.X., Sun, Y.Y., Qu, G.P., Guo, Y., Zhang, X.J., Zhao, H.X. and Hu, S.W. (2018) Male Sterility of an AHAS-Mutant Induced by Tribenuron-Methyl Solution Correlated with the Decrease of AHAS Activity in Brassica napus L. Frontiers in Plant Science, 9, Article No. 1014. https://doi.org/10.3389/fpls.2018.01014 |
[23] | Li, H.T., Li, J.J., Zhao, B., Wang, J., Yi, L.C., Liu, C., Wu, J.S., King, G.J. and Liu, K.D. (2015) Generation and Characterization of Tribenuron-Methyl Herbicide-Resistant Rapeseed (Brasscia napus) for Hybrid Seed Production Using Chemically Induced Male Sterility. Theoretical and Applied Genetics, 128, 107-118.
https://doi.org/10.1007/s00122-014-2415-7 |
[24] | Piao, Z.Z., Wang, W., Wei, Y.N., Francesco, Z., Wan, C.Z., Bai, J.J., Wu, S.W., Wang, X.Q. and Fang, J. (2018) Characterization of an Acetohydroxy Acid Synthase Mutant Conferring Tolerance to Imidazolinone Herbicides in Rice (Oryza sativa). Planta, 247, 693-703. https://doi.org/10.1007/s00425-017-2817-2 |
[25] | Han, H., Yu, Q., Purba, E., Li, M., Walsh, M., Friesen, S. and Powles, S.B. (2012) A Novel Amino Acid Substitution Ala-122-Tyr in ALS Confers High-Level and Broad Resistance across ALS-Inhibiting Herbicides. Pest Management Science, 68, 1164-1170. https://doi.org/10.1002/ps.3278 |
[26] | Tranel, P.J., Wright, T.R. and Heap, I.M. (2021) Mutations in Herbi-cide-Resistant Weeds to ALS Inhibitors. The International Herbicide-Resistant Weed Database. http://www.weedscience.com |
[27] | Murphy, B.P. and Tranel, P.J. (2019) Target-Site Mutations Conferring Herbicide Resistance. Plants, 8, Article No. 382. https://doi.org/10.3390/plants8100382 |
[28] | Pan, G., Zhang, X.Y., Liu, K.D., Zhang, J.W., Wu, X.Z., Zhu, J. and Tu, J.M. (2006) Map-Based Cloning of a Novel Rice Cytochrome P450 Gene CYP81A6 That Confers Resistance to Two Different Classes of Herbicides. Plant Molecular Biology, 61, 933-943. https://doi.org/10.1007/s11103-006-0058-z |
[29] | Saika, H., Horita, J., Taguchi-Shiobara, F., et al. (2014) A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis. Plant Physiology, 166, 1232-1240.
https://doi.org/10.1104/pp.113.231266 |
[30] | Bailey, W.A. and Wilcut, J.W. (2003) Tolerance of Imidazoli-none-Resistant Corn (Zea mays) to Diclosulam. Weed Technology, 17, 60-64. https://doi.org/10.1614/0890-037X(2003)017[0060:TOIRCZ]2.0.CO;2 |
[31] | Currie, R.S., Kwon, C.S. and Penmer, D. (1995) Magnitude of Imazethapyr Resistance of Corn (Zea mays) Hybrids with Altered Acetolactate Synthase. Weed Science, 43, 578-582. https://doi.org/10.1017/S0043174500081674 |
[32] | Newhouse, K., Singh, B., Shaner, D., et al. (1991) Mutations in Corn (Zea mays L.) Conferring Resistance to Imidazolinone Herbicides. Theoretical and Applied Genetics, 83, 65-70. https://doi.org/10.1007/BF00229227 |
[33] | Al-Khatib, K. and Miller, J.F. (2000) Registration of Four Genetic Stocks of Sunflower Resistant to Imidazolinone Herbicides. Crop Science, 40, 869-870. |
[34] | 沈晓霞, 倪长春. 咪唑啉酮类除草剂耐受性作物的过去, 现状和将来(上) [J]. 世界农药, 2005, 27(5): 9-13. |
[35] | Newhouse, K., Smith, W.A., Starrett, M.A., et al. (1992) Tolerance to Imidazolinone Herbicides in Wheat. Plant Physiology, 100, 882-886. https://doi.org/10.1104/pp.100.2.882 |
[36] | Pozniak, C.J., Birk, I.T., O’Donoughue, L.S., et al. (2004) Physiological and Molecular Characterization of Mutation-Derived Imidazolinone Resistance in Spring Wheat. Crop Science, 44, 1434-1443.
https://doi.org/10.2135/cropsci2004.1434 |
[37] | Webster, E.P. and Masson, J.A. (2001) Acetolactate Syn-thase-Inhibiting Herbicides on Imidazolinone-Tolerant Rice. Weed Science, 49, 652-657. https://doi.org/10.1614/0043-1745(2001)049[0652:ASIHOI]2.0.CO;2 |
[38] | 陈竹锋, 王承旭, 唐晓艳, 邓兴旺. 水稻抗除草剂蛋白及其在植物育种中的应用[P]. 中国专利, CN201210037789.9. 2012-02-20. |
[39] | 浦惠明, 胡茂龙, 高建芹, 龙卫华, 张洁夫, 陈松, 陈锋, 付三雄, 周晓婴, 戚存扣. 一种基于ALS靶酶的抗除草剂油菜定向选育方法[P]. 中国专利, CN201310054645.9. 2013-02-21. |
[40] | 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用[J]. 作物学报, 2020, 46(10): 1639-1646. |