全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进密度聚类的用气异常检测
Anomaly Detection of Industrial Gas Load Based on Improved Density Clustering

DOI: 10.12677/AAM.2021.1011420, PP. 3952-3961

Keywords: DBSCAN,PAA,K近邻距离图–网格搜索法,日负荷曲线
DBCSAN
, PAA, K-Nearest Neighbor Distance Graph-Grid Search Method, Daily Load Curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好地从管网系统中挖掘数据信息,科学地计量工商业用气规律,帮助燃气公司对用户异常用气行为进行智能识别,本文提出了一种基于K-近邻距离图和网格搜索法(Grid search)的密度聚类(DBCSAN)算法,结合分段聚合近似表示方法(PAA)在包含噪声的数据集中通过寻找工业燃气数据集的内在分布规律和聚类效果的变化来识别异常点。首先以来自SCADA和智能表具采集的南方某陶瓷工厂日负荷数据为例,使用PAA方法对数据进行降维处理。其次利用改进的DBSCAN算法对案例用户监测时段中的异常数据进行识别。最后将算法在某南方陶瓷行业的325个用户数据上进行了验证。结果表明,算法的平均准确率在90%以上,人工智能算法在燃气领域的应用对于燃气经营企业实现精细化管理、以及达到降本增效的效果具有一定的指导意义。
In order to better mine the data information from the pipeline network system, scientific measurement of industrial and commercial gas consumption laws, and help gas companies to intelligently identify abnormal gas consumption behavior of users, a density clustering (DBCSAN) algorithm based on k-nearest neighbor distance graph and Grid search is proposed, which identifies outliers in noisy data sets by the method of approximate representation based on piecewise aggregation (PAA) to search for the distribution of industrial gas data sets and the change of clustering effect. Firstly, the daily load data of a ceramic factory in south China collected by SCADA and smart meters are taken as an example, and the data are processed with PAA method. Secondly, the improved DBSCAN algorithm is used to identify the abnormal data in the monitoring period of case users. Finally, the algorithm is applied to 325 users’ data in a ceramic industry in south China. The results show that the average accuracy of the algorithm is over 90%, and the effective application of artificial intelligence algorithm in gas field is realized. It has certain guiding significance for gas enterprises to realize fine management and achieve the effect of reducing cost and increasing efficiency.

References

[1]  赵然. 燃气涡轮流量计的在线监测及故障诊断实验研究[D]: [硕士学位论文]. 北京: 北京建筑大学, 2018.
[2]  张彤, 徐晓钟, 王晓霞, 等. 基于改进LMD与GRU网络的短期天然气负荷预测[J]. 计算机系统应用, 2019, 28(6): 31-39.
[3]  邓春宇, 吴克河, 谈元鹏, 胡杰. 基于多元时间序列分割聚类的异常值检测方法[J]. 计算机工程与设计, 2020, 41(11): 3123-3128.
[4]  孙宇豪, 李国通, 张鸽. 距离相关系数融合GPR模型的卫星异常检测方法[J]. 北京航空航天大学学报, 2021, 47(4): 844-852.
[5]  蹇诗婕, 卢志刚, 姜波, 等. 基于层次聚类方法的流量异常检测[J]. 信息安全研究, 2020, 6(6): 474-481.
[6]  马国鑫. 时间序列流数据的建模预测和异常检测方法研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2020.
[7]  王婷, 王其兵, 燕争上, 等. 基于改进的快速密度峰值聚类的调控系统故障定位算法[J]. 太原理工大学学报, 2020, 51(6): 860-866.
[8]  王得福. 基于人工智能的网络异常行为检测研究[D]: [硕士学位论文]. 北京: 北京邮电大学, 2020.
[9]  钟勇, 林冬梅, 秦小麟. 一种基于查询密度聚类的异常检测算法[J]. 系统工程与电子技术, 2007(4): 640-646.
[10]  何翼, 刘云. 基于机器学习的无线传感器网络异常值检测算法[J]. 电子技术与软件工程, 2021(2): 40-41.
[11]  孙友强. 时间序列数据挖掘中的维数约简与预测方法研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2014.
[12]  周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[13]  秦佳奇, 许源源. 基于变分自编码器的异常负荷检测算法研究[J]. 电子技术与软件工程, 2021(7): 183-184.
[14]  王桂兰, 周国亮, 赵洪山. 大规模用电数据流的快速聚类和异常检测技术[J]. 电力系统自动化, 2016, 40(24): 27-33.
[15]  宋国明, 王厚军, 姜书艳, 刘红. 基于小波分析和分层决策的模拟电路故障识别方法[J]. 计算机应用研究, 2010, 27(6): 2057-2060+2064.
[16]  黄悦华, 郭思涵, 鲍刚, 等. 基于用电特征分析的异常用电检测方法[J]. 三峡大学学报(自然科学版), 2021, 43(1): 96-101.
[17]  李宁, 尹小明, 丁学峰, 蔡慧, 汪伟. 一种融合聚类和异常点检测算法的窃电辨识方法[J]. 电测与仪表, 2018, 55(21): 19-24.
[18]  肖勇, 郑楷洪, 余忠忠, 等. 基于三次指数平滑模型与DBSCAN聚类的电量数据异常检测[J]. 电网技术, 2020, 44(3): 1099-1104.
[19]  Mahesh Kumar, K. and Rama Mohan Reddy, A. (2016) A Fast DBSCAN Clustering Algorithm by Accelerating Neighbor Searching Using Groups Method. Pattern Recognition, 58, 39-48.

https://doi.org/10.1016/j.patcog.2016.03.008
[20]  Livee, C. and Prateek, G. (2014) Improved DBSCAN Clustering Algorithm Using SR-Tree. International Journal in IT & Engineering, 2, 2321-1776.
[21]  Anant, R., Sunita, J., Anand, S.J., et al. (2010) A Density Based Algorithm for Discovering Density Varied Clusters in Large Spatial Databases. International Journal of Computer Applications, 3, 1-4.

https://doi.org/10.5120/739-1038
[22]  Artur, S., Piotr, G. and Meng, J.E. (2020) A New Method for Automatic Determining of the DBSCAN Parameters. Journal of Artificial Intelligence and Soft Computing Research, 10, 209-221.

https://doi.org/10.2478/jaiscr-2020-0014
[23]  Zhao, Z., Yang, A., Guo, P., et al. (2020) A Density Clustering Algorithm for Simultaneous Modulation Format Identification and OSNR Estimation. Applied Sciences, 10, 1095.

https://doi.org/10.3390/app10031095
[24]  Chen, S., Liu, X., Ma, J., et al. (2019) Parameter Selection Algorithm of DBSCAN Based on K-Means Two Classification Algorithm. The Journal of Engineering, 2019, 8676-8679.

https://doi.org/10.1049/joe.2018.9082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133