|
西藏尼木岗讲铜矿床不同成矿阶段流体包裹体特征及其对成矿的指示意义
|
Abstract:
岗讲斑岩型铜矿床是西藏冈斯成矿带一个大型铜矿床。成矿作用主要与黑云二长花岗岩、石英二长斑岩和闪长斑岩密切相关。根据包裹体在室温下的相态充填度以及是否含有子矿物等,将岗讲矿床的流体包裹体分为3大类:富液相包裹体(I)、富气相包裹体(II)和含子矿物多相包裹体(III)。其中,黄铜矿–黄铁矿化阶段流体包裹体主要为I、II和III类包裹体,均一温度在173.2℃~493.2℃之间,盐度为1.74%~36.2% NaCleqv;辉钼矿–黄铜矿化阶段的流体包裹体主要为I、II和III类包裹体,均一温度介于179.8℃~390℃之间,盐度为7.13%~35.2% NaCleqv,早晚成矿阶段流体包裹体均一温度略有降低,盐度变化范围基本保持一致,表示流体发生过多次不混溶作用,预示压力的逐渐降低和硫化物的沉淀。成矿流体总体表现为中温、低盐度的NaCl-H2O体系,可能与青藏高原快速隆升过程中大量大气降水参与成矿活动有关。激光拉曼探针分析结果表明,流体包裹体液相成分主要为H2O,气相成分含有CO2,子矿物含少量黄铜矿。但是该矿床品位总体偏低,规模有限,可能是原始岩浆流体“先天不足”造成。
The Gangjiang deposit is a large copper deposit in Tibet. Mineralization mainly occurs in bio- adamellite, quartz-monzonite-porphyry and diorite porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. According to the phase filling characteristics of inclusions at room temperature and whether they contain sub minerals, three types of fluid inclusions were recognized: aqueous fluid inclusions (I type), H2O-CO2 inclusions (II type), and daughter mineral- bearing fluid inclusions (III type). Measurement of inclusions trapped in quartz revealed that the total homogenization temperatures were 173.2?C~493.2?C in chalcopyrite-pyrite mineralization stage, 179.8?C~390?C in molybdenite-chalcopyrite mineralization stage, with corresponding salinities of 1.74%~36.2% NaCleqv and 7.13%~35.2% NaCleqv. The homogenization temperature of fluid inclusions decreased slightly in the early and late metallogenic stages, and the variation range of salinity remained basically the same, indicating that the fluid has been immiscible many times, with the decrease of pressure, the sulfide gradually precipitates. The ore-forming fluids is NaCl-H2O system fluid with medium temperature, which may be related to the participation of a large amount of atmospheric precipitation in ore-forming activities during the rapid uplift of the Qinghai Tibet Plateau. The laser Raman probe analysis shows that the main component of fluid wrapped body fluid phase is H2O, with the gas phaes containing CO2, and containing a small amount of chalcopyrite. However, the grade of the Gangjiang deposit is generally low, and with limited scale, it may be caused by the “congenital deficiency” of primitive magmatic fluid.
[1] | 朱训, 黄崇轲, 芮宗瑶, 周耀华, 朱贤甲, 胡淙声, 梅占魁. 德兴斑岩铜矿床[M]. 北京: 地质出版社, 1983: 1-336. |
[2] | Roedder, E. (1984) Fluid Inclusions, Mineralogical Society of America. Reviews in Mineralogy, 12, 644-645.
https://doi.org/10.1515/9781501508271 |
[3] | 芮宗瑶, 黄崇轲, 齐国明, 徐珏, 张洪涛. 中国斑岩铜(钼)矿[M]. 北京: 地质出版社, 1984: 1-350. |
[4] | Candela, P.A. and Holland, H.D. (1986) A Mass Transfer Model for Copper and Molybdenum in Magmatic Hydrothermal Systems: The Origin of Porphyry-Type Ore Deposits. Economic Geology, 81, 1-19.
https://doi.org/10.2113/gsecongeo.81.1.1 |
[5] | Hemley, J.J. and Hunt, J.P. (1992) Hydrothermal Ore-Forming Processes in the Light of Studies in Rock-Buffered Systems II: Some General Geologic Applications. Economic Geology, 87, 23-43.
https://doi.org/10.2113/gsecongeo.87.1.23 |
[6] | Heinrich, C.A., Guenther, D., Audetat, A., Ulrich, T. and Frischknecht, R. (1999) Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27, 755-758.
https://doi.org/10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 |
[7] | Ulrich, T., Gunther, D. and Heinrich, C.A. (2001) The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 96, 1743-1774.
https://doi.org/10.2113/gsecongeo.96.8.1743 |
[8] | 陈衍景, 倪培, 范宏瑞, Pirajno, F., 赖勇, 苏文超, 张辉. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9): 2085-2108. |
[9] | Richards, J.P. (2009) Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37, 247-250. https://doi.org/10.1130/G25451A.1 |
[10] | 谢玉玲, 衣龙升, 徐九华, 李光明, 杨志明, 尹淑苹. 冈底斯斑岩铜矿带冲江铜矿含矿流体的形成和演化: 来自流体包裹体的证据[J]. 岩石学报, 2006, 22(4): 1023-1030. |
[11] | 郑有业, 薛迎喜, 程力军, 樊子珲, 高顺宝. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、特征及意义[J]. 地球科学——中国地质大学学报, 2004, 29(1): 103-108. |
[12] | 芮宗瑶, 侯增谦, 李光明, 刘波, 张立生, 王龙生. 冈底斯斑岩铜矿成矿模式[J]. 地质论评, 2006, 52(4): 459-466. |
[13] | 曲晓明, 侯增谦, 黄卫. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带[J]. 矿床地质, 2001, 20(4): 355-366. |
[14] | 李金祥, 秦克章, 李光明, 杨列坤. 冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄: 对岩浆–热液系统演化和成矿构造背景的制约[J]. 岩石学报, 2007, 23(5): 953-966. |
[15] | 王小春, 晏子贵, 周维德, 贾向勘, 李作华, 文军, 徐德章, 袁剑飞. 初论西藏冈底斯中段尼木西北部斑岩铜矿地质特征[J]. 地质与勘探, 2002, 38(1): 5-8. |
[16] | 周维德, 张庆松. 西藏尼木岗讲斑岩Cu-Mo矿床地质特征初步研究[J]. 四川地质学报, 2010, 30(4): 416-419. |
[17] | 冷成彪, 张兴春, 周维德. 西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄[J]. 地学前缘, 2010, 17(2): 185-197. |
[18] | 坚润堂, 张裴培, 韩艳伟, 王岩梅. 西藏冈底斯带中段尼木地区岗讲斑岩铜钼矿地质特征浅析[J]. 矿床地质, 2012, 31(增刊): 1031-1032. |
[19] | 坚润堂, 赵献昆, 姜华. 西藏尼木斑岩铜多金属矿区岩浆岩地球化学特征及成因探讨[J]. 科学技术与工程, 2016, 16(4): 141-147. |
[20] | 朱小三, 卢民杰, 程文景, 宋玉财, 张超. 安第斯与冈底斯成矿带斑岩铜矿床矿物学和成矿斑岩地球化学特征对比[J]. 地质通报, 2017, 36(2): 2143-2153. |
[21] | 杜光伟, 程力军, 赵咸明. 冈底斯东段地球化学特征及其找矿意义[J]. 西藏地质, 2001, 19: 74-79. |
[22] | 程力军, 李志, 刘鸿飞, 杜光伟, 郭建慈. 冈底斯东段铜多金属成矿带的基本特征[J]. 西藏地质, 2001, 19(1): 43-53. |
[23] | 王光旺, 曾红坤. 西藏尼木县岗讲铜钼矿找矿方向研究[J]. 矿产与地质, 2014, 28(5): 583-589. |
[24] | 徐德章. 西藏尼木县厅宫、白容铜矿区矿床地质的几个问题[J]. 地质找矿论丛, 2006, 21(增刊): 15-19. |
[25] | 卢焕章, 范宏章, 倪培, 欧光习, 沈昆, 张文淮. 流体包裹体[M]. 北京: 科学出版社, 2004: 1-487. |
[26] | Bodnar, R.J. (1993) Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57, 683-684. https://doi.org/10.1016/0016-7037(93)90378-A |
[27] | Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of Microthermometric Data for H2O-NaCl Fluid Inclusions. In: De Vivo, B. and Frezzotti, M.L., Eds., Fluid Inclusions in Minerals, Methods and Applications, Virginia Tech., Blacksburg, 117-130. |
[28] | Hall, D.L., Sterner, S.M. and Bodnar, R.J. (1988) Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83, 197-202. https://doi.org/10.2113/gsecongeo.83.1.197 |
[29] | Bodnar, R.J. (1983) A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids. Economic Geology, 78, 535-542. https://doi.org/10.2113/gsecongeo.78.3.535 |
[30] | Bischoff, J.L. (1991) Densities of Liquids and Vapors in Boling NaCl-H2O Solutions: A PVTX Summary from 300 ?C to 500 ?C. American Journal of Science, 291, 309-338. https://doi.org/10.2475/ajs.291.4.309 |
[31] | 胡芳芳, 范宏瑞, 于虎, 刘振豪, 宋林夫, 金成伟. 胶东三甲金矿床流体包裹体特征[J]. 岩石学报, 2008, 24(9): 2037-2044. |
[32] | Nash, J.T. and Theodore, T.G. (1971) Ore Fluids in the Porphyry Copper Deposit at Copper Canyon, Nevada. Economic Geology, 66, 385-399. https://doi.org/10.2113/gsecongeo.66.3.385 |
[33] | Cline, J.S. and Bodnar, R.J. (1991) Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt? Journal of Geophysical Research, 96, 8113-8126. https://doi.org/10.1029/91JB00053 |
[34] | Yang, K. and Bodnar, R.J. (2004) Orthomagmatic Origin for the Ilkwang Cu-W Breccia-Pipe Deposit, Southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Sciences, 24, 259-270.
https://doi.org/10.1016/j.jseaes.2003.12.001 |
[35] | Frezzotti, M.L. (1992) Magmatic Immiscibility and Fluid Phase Evolution in the Mount Genis Granite (Southeastern Sardinia, Italy). Geochimica et Cosmochimica Acta, 56, 21-33. https://doi.org/10.1016/0016-7037(92)90114-X |
[36] | Cline, J.S. and Vanko, D.A. (1995) Magmatically Generated Saline Brines Related to Molybdenum at Questa, New Mexico, USA. In: Thompson, J.F.H., Ed., Magmas, Fluids, and Ore Deposits, Mineralogical Association of Canada Short Course Series, Mineralogical Association of Canada, Québec, 153-174. |
[37] | Bouzari, F. and Clark, A.H. (2006) Prograde Evolution and Geothermal Affinities of a Major Porphyry Copper Deposit: The Cerro Colorado Hypogene Protore, I Refión, Northerm Chile. Economic Geology, 101, 95-134.
https://doi.org/10.2113/gsecongeo.101.1.95 |
[38] | Cline, J.S. (2003) How to Concentrate Copper. Science, 303, 2075-2076. https://doi.org/10.1126/science.1093202 |
[39] | Heinrich, C.A. (2007) Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65, 363-387. https://doi.org/10.2138/rmg.2007.65.11 |
[40] | Beane, R.E. and Titley, S.R. (1981) Porphyry Copper Deposit Part II. Hydrothermal Alteration and Mineralization. Economic Geology, 75, 214-269. https://doi.org/10.5382/AV75.09 |
[41] | Beane, R.E. and Bodnar, R.J. (1995) Hydrothermal Fluids and Hydrothermal Alteration in Porphyry Copper Deposits. Porphyry Copper Deposits of the American Codillera. Arizona Geological Society Digest, 20, 83-93. |
[42] | Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T. and Kunze, K. (2005) Copper Deposition during Quartz Dissolution by Cooling Magmatic-Hydrothermal Fluids: The Bingham Porphyry. Earth and Planetary Science Letters, 235, 229-243. https://doi.org/10.1016/j.epsl.2005.02.046 |
[43] | Klemm, L.M., Pettke, T., Heinrich, C.A. and Campos, E. (2007) Hydrothermal Evolution of the EI Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102, 1021-1045.
https://doi.org/10.2113/gsecongeo.102.6.1021 |
[44] | 张绮玲, 曲晓明, 徐文艺, 侯增谦, 陈伟十. 西藏南木斑岩铜钼矿床的流体包裹体研究[J]. 岩石学报, 2003, 19(2): 251-259. |