|
基于集合平滑器的地下水污染源与含水层参数的同步反演
|
Abstract:
当地下水污染发生时,能够准确及时地得到污染源信息及场地的渗透性分布,对于污染修复方案的制定尤为重要。但这些信息无法直接观测获取,只能通过有限的观测数据来推估。本文利用集合数据同化方法ILUES算法作为求解框架进行地下水污染源与含水层参数的同步反演,重点探讨样本集合数目和观测信息对地下水污染源反演和含水层渗透系数场估计结果的影响。算例结果表明,融合观测水头数据和浓度数据的ILUES算法框架能够实现污染源参数和渗透系数场的同步反演;作为数据同化方法,ILUES算法参数(集合样本数量)和观测信息(观测井数量和空间分布等)都直接影响着地下水污染源反演和渗透系数场估计的准确性。
When groundwater pollution occurs, it is particularly important to be able to obtain accurate and timely information on the source of contaminant and the hydraulic conductivity field of the site for the development of contamination remediation plans. However, this information cannot be obtained by direct observation and can only be deduced by limited measurement data. In this paper, the ensemble data assimilation method (ILUES algorithm) is adopted as the solution framework for simultaneous identification of groundwater contaminant source and aquifer parameters, the influence of sample set number and observation information on groundwater contaminant source identification and estimation of aquifer hydraulic conductivity field is discussed. The results show that the ILUES algorithm framework, which assimilates the observation data (hydraulic head and concentration data), can achieve the simultaneous inversion of contaminant source parameters and hydraulic conductivity field. As a data assimilation method, ILUES algorithm parameters (the number of ensemble samples) and observation information (the number and locations of monitoring wells, etc.) directly affect the accuracy of groundwater contaminant source identification and hydraulic conductivity field estimation.
[1] | 郭永丽, 张文静, 滕彦国. 基于MAROS平台的地下水污染监测网优化设计[J]. 水文, 2013, 33(4): 45-54. |
[2] | Ayvaz, T.M. (2016) A Hybrid Simulation-Optimization Approach for Solving the Areal Groundwater Pollution Source Identification Problems. Journal of Hydrology, 538, 161-176. https://doi.org/10.1016/j.jhydrol.2016.04.008 |
[3] | 张双圣, 刘汉湖, 强静, 等. 基于贝叶斯公式的地下水污染源及含水层参数同步反演[J]. 中国环境科学, 2019, 39(7): 2902-2912. |
[4] | 鞠磊. 基于多源数据同化的含水层异质性刻画[D]: [博士学位论文]. 杭州: 浙江大学, 2018. |
[5] | 江思珉, 蔡奕, 王敏, 等. 基于和声搜索算法的地下水污染源与未知含水层参数的同步反演研究[J]. 水利学报, 2012, 43(12): 1470-1477. |
[6] | Zhou, H., Gómez-Hernández, J.J. and Li, L. (2014) Inverse Methods in Hydrogeology: Evolution and Recent Trends. Advances in Water Resources, 63, 22-37. https://doi.org/10.1016/j.advwatres.2013.10.014 |
[7] | 王文, 寇小华. 水文数据同化方法及遥感数据在水文数据同化中的应用进展[J]. 河海大学学报: 自然科学版, 2009, 37(5): 66-72. |
[8] | Reichle, R.H. (2008) Data Assimilation Methods in the Earth Sciences. Advances in Water Resources, 31, 1411-1418.
https://doi.org/10.1016/j.advwatres.2008.01.001 |
[9] | Eerick, A.A. and Reynolds, A.C. (2013) Ensemble Smoother with Multiple Data Assimilation. Computers & Geosciences, 55, 3-15. https://doi.org/10.1016/j.cageo.2012.03.011 |
[10] | Ju, L., Zhang, J., Meng, L., et al. (2018) An Adaptive Gaussian Process-Based Iterative Ensemble Smoother for Data Assimilation. Advances in Water Resources, 115, 125-135. https://doi.org/10.1016/j.advwatres.2018.03.010 |
[11] | Zhang, J., Lin, G., Wu, L., et al. (2018) An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters with Multimodal Distributions. Water Resources Research, 54, 1716-1733. https://doi.org/10.1002/2017WR020906 |
[12] | 张江江. 地下水污染源解析的贝叶斯监测设计与参数反演方法[D]: [博士学位论文]. 杭州: 浙江大学, 2017. |
[13] | Zhang, J., Li, W., Zeng, L., et al. (2016) An Adaptive Gaussian Process-Based Method for Efficient Bayesian Experimental Design in Groundwater Contaminant Source Identification Problems. Water Resources Research, 52, 5971-5984.
https://doi.org/10.1002/2016WR018598 |
[14] | Mogheir, Y. and Singh, V.P. (2002) Application of Information Theory to Groundwater Quality Monitoring Networks. Water Resources Management, 16, 37-49. https://doi.org/10.1023/A:1015511811686 |
[15] | Sreekanth, J., Lau, H. and Pagendam, D.E. (2017) Design of Optimal Groundwater Monitoring Well Network Using Stochastic Modelling and Reduced Rank Spatial Prediction. Water Resources Research, 53, 6821-6840.
https://doi.org/10.1002/2017WR020385 |
[16] | McDonald, M.C. and Harbaugh, A.W. (1988) MODFLOW, a Modular Three-Dimensional Finite Difference Groundwater Flow Model. USGS Techniques of Water Resources Investigations, Book 6. |
[17] | Zheng, C. and Wang, P.P. (1999) MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide. US Army Engineer Research and Development Center. |
[18] | Zhang, D. and Lu, Z. (2004) An Efficient, High-Order Perturbation Approach for Flow in Random Porous Media via Karhunen-Loève and Polynomial Expansions. Journal of Computational Physics, 194, 773-794.
https://doi.org/10.1016/j.jcp.2003.09.015 |