|
盐碱地水盐运移研究现状与展望
|
Abstract:
盐渍土在我国广泛分布,西北、华北、东北及沿海是我国盐渍土的主要集中分布地区,耕地中也有大量盐渍化土壤分布。盐碱地治理和改良的关键在于探究土壤水盐运移规律,而盐碱地监测技术和水盐模型又是模拟和预测农田土壤水盐动态变化最为有效的途径。本文从监测技术、影响因素及模型应用等角度进行综述,进而指出了土壤水盐运移机理研究的不足之处,在此基础上,进一步提出水盐运移研究未来的发展趋势。
Saline-alkali soils are widely distributed in northwest, north, northeast and coastal regions in China, and large areas of arable land are salt affected as well. The key to the management and improvement of saline-alkali soils is to explore the law of soil water and salt migration, and sa-line-alkali soils monitoring technology and water-salt models are the most effective ways to simulate and predict the dynamic changes of soil water and salt in farmland. This article reviews the monitoring technology, influencing factors and model application, and then points out the shortcomings of the research on the mechanism of soil water and salt transport. On this basis, it further proposes the future development trend of water and salt transport research.
[1] | 杨玉坤, 耿计彪, 于起庆, 王嘉, 于文勇, 赵薇. 盐碱地土壤利用与改良研究进展[J]. 农业与技术, 2019, 39(24): 108-111. |
[2] | 宋静茹, 杨江, 王艳明, 宋常吉. 黄河三角洲盐碱地形成的原因及改良措施探讨[J]. 安徽农业科学, 2017, 45(27): 95-97+234. |
[3] | 刘庆生, 刘高焕, 励惠国. 辽河三角洲土壤盐渍化现状及特征分析[J]. 土壤学报, 2004, 41(2): 190-195. |
[4] | 姚荣江, 杨劲松, 姜龙. 电磁感应仪用于土壤盐分空间变异及其剖面分布特征研究[J]. 浙江大学学报: 农业与生命科学版, 2007, 33(2): 207-216. |
[5] | 刘文全, 于洪军, 徐兴永. 莱州湾南岸表层土壤含盐量与有机质空间分布的定量研究[J]. 海洋通报, 2014, 33(3): 277-282. |
[6] | 杜国平, 董巧云. 非饱和地下水溶质运移的测量仪器与测量方法[J]. 江苏农业学报, 2003, 19(2): 127-128. |
[7] | 杨劲松, 姚荣江, 刘广明. 电磁感应仪用于土壤盐分空间变异性的指示克立格分析评价[J]. 土壤学报, 2008, 45(4): 585-593. |
[8] | McNeal, B.L., Oster, J.D. and Hatcher, J.T. (1970) Calculation of Electrical Conductivity from Solution Composition Data as an Aid to In-Situ Estimation of Soil Salinity. Soil Science, 110, 405-414.
https://doi.org/10.1097/00010694-197012000-00008 |
[9] | Bohn, H.L., McNeal, B.L. and O’Connor, G.A. (1979) Soil Chemistry. Wiley, New York.
https://doi.org/10.1097/00010694-198006000-00010 |
[10] | Topp, G.C., Davis, J.L. and Annan, A.P. (1980) Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16, 574-582. https://doi.org/10.1029/WR016i003p00574 |
[11] | Dalton, F.N., Herkelrath, W.N., Rawlins, D.S., et al. (1984) Time-Domain Reflectometry: Simultaneous Measurement of Soil Water Content and Electrical Conductivity with a Single Probe. Science, 224, 989-990.
https://doi.org/10.1126/science.224.4652.989 |
[12] | Heimovaara, T.J., Focke, A.G., Bouten, W., et al. (1995) Assessing Temporal Variations in Soil Water Composition with Time Domain Reflectometry. Soil Science Society of America Journal, 59, 689-698.
https://doi.org/10.2136/sssaj1995.03615995005900030009x |
[13] | Reece, C.F. (1998) Simple Method for Determining Cable Length Resistance in Time Domain Reflectometry Systems. Soil Science Society of America Journal, 62, 314-317. https://doi.org/10.2136/sssaj1998.03615995006200020003x |
[14] | Rhoades, J.D. (1996) Salinity: Electrical Conductivity and Total Dissolved Solids. In: Sparks, D.L., Ed., Methods of Soil Analysis: Part 3. Chemical Methods, Soil Science Society of America, Madison, 417-435.
https://doi.org/10.2136/sssabookser5.3.c14 |
[15] | Rhoades, J.D. and Corwin, D.L. (1981) Determining Soil Electrical Conductivity-Depth Relations Using an Inductive Electromagnetic Soil Conductivity Meter. Soil Science Society of America Journal, 45, 255-260.
https://doi.org/10.2136/sssaj1981.03615995004500020006x |
[16] | Rhoades, J.D. (1992) Instrumental Field Methods of Salinity Appraisal. In: Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, Soil Science Society of America, Madison, 231-248.
https://doi.org/10.2136/sssaspecpub30.c12 |
[17] | Williams, B.G. and Hoey, D. (1987) The Use of Electromagnetic Induction to Detect the Spatial Variability of the Salt and Clay Contents of Soils. Soil Research, 25, 21-27. https://doi.org/10.1071/SR9870021 |
[18] | 宋长春, 阎百兴, 宋新山. 电磁技术在苏打盐渍化土壤研究中的应用[J]. 地理科学, 2002, 22(1): 91-95. |
[19] | 陈玉娟. EM38大地电导仪的应用研究[J]. 干旱地区农业研究, 2004, 22(2): 146-148. |
[20] | 李海涛, 李小梅, Philip B, 等. 电磁感应方法在土壤盐渍化评价中的应用研究[J]. 水文地质工程地质, 2006, 33(1): 95-98. |
[21] | Rhoades, J.D. and Halvorson, A.D. (1977) Electrical Conductivity Methods for Detecting and Delineating Saline Seeps and Measuring Salinity in Northern Great Plains Soils. Excessive Salt Accumulation. |
[22] | ARS-W-US Agricultural Research Service, Western Region (USA), 1977. |
[23] | Burger, H.R. (1992) Exploration Geophysics of the Shallow Subsurface. Prentice Hall, Hoboken. |
[24] | Rhoades, J.D. (1993) Electrical Conductivity Methods for Measuring and Mapping Soil Salinity. Advances in Agronomy, 9, 201-251. https://doi.org/10.1016/S0065-2113(08)60795-6 |
[25] | Lund, E.D., Colin, P.E., Christy, D., et al. (1999) Applying Soil Electrical Conductivity Technology to Precision Agriculture. Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, 19-22 July 1998, 1089-1100. https://doi.org/10.2134/1999.precisionagproc4.c12b |
[26] | Loke, M.H. and Barker, R.D. (1996) Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospecting, 44, 131-152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x |
[27] | 龚永坚, 盛法生, 陈霓. 基于无线传输的轮胎气压监测系统设计[J]. 农业机械学报, 2005, 36(6): 79-81. |
[28] | 杨柳, 毛志怀, 蒋志杰, 等. 基于无线传输的粮仓温湿度远程监测系统[J]. 农业工程学报, 2012, 28(4): 155-159. |
[29] | 明五一, 沈娣丽, 刘武发. 基于ARM7无线传输的热电偶远程监控系统[J]. 单片机与嵌入式系统应用, 2010(3): 61-64. |
[30] | 孙宏志, 王学成, 刘一萌, 等. 基于3G无线传输的测震台站监控设备的研制[J]. 地震工程学报, 2014, 36(2): 387-392. |
[31] | 胡胜利, 万晋军. 基于GPRS的地下水自动监测系统设计[J]. 水利水电技术, 2011, 42(1): 89-91. |
[32] | 李禹霏, 陈世昌, 徐湘涛. 贵州都匀马达岭地质灾害链的自动化监测[J]. 工程地质学报, 2014, 22(3): 482-488. |
[33] | 徐艳玲, 马道坤, 曾庆猛, 等. 一种多点土壤电导率实时监测系统的研制[J]. 中国农业大学学报, 2006, 11(5): 75-80. |
[34] | 赵学伟. 基于GPR的黄河三角洲滨海盐渍土水盐含量探测模型研究[D]: [硕士学位论文]. 泰安: 山东农业大学, 2019. |
[35] | 刘广明, 杨劲松. 地下水作用条件下土壤积盐规律研究[J]. 土壤学报, 2003, 40(1): 65-69. |
[36] | 王水献, 周金龙, 董新光. 地下水浅埋区土壤水盐试验分析[J]. 新疆农业大学学报, 2004, 27(3): 52-56. |
[37] | 张红, 章光新, 杨建锋, 杨帆. 人工控制潜水位下苏打盐渍土水盐动态分析[J]. 干旱区资源与环境, 2008, 22(5): 149-154. |
[38] | 李小倩, 夏江宝, 赵西梅, 杨吉华. 不同潜水埋深下浅层土壤的水盐分布特征[J]. 中国水土保持科学, 2017, 15(2): 43-50. |
[39] | 朱文东, 杨帆. 潜水作用下土壤水盐运移过程[J]. 土壤与作物, 2019, 8(1): 11-22. |
[40] | 尹建道, 伊舆田朱美, 生原喜久雄, 杨勇, 姜志林. 人工降水条件下土壤脱盐动态规律的实验研究[J]. 山东农业大学学报(自然科学版), 2002, 33(3): 264-268. |
[41] | 赵耕毛, 刘兆普, 陈铭达, 邓力群. 不同降雨强度下滨海盐渍土水盐运动规律模拟实验研究[J]. 南京农业大学学报, 2003, 26(2): 51-54. |
[42] | 李莎, 何新林, 王振华, 陈书飞, 贾文俊. 微咸水灌溉对膜下滴灌棉花土壤盐分的影响试验[J]. 武汉大学学报(工学版), 2010, 43(5): 571-575. |
[43] | 王艳, 吴勇, 廉晓娟, 王正祥, 张余良, 贺宏达. 不同矿化度水淋洗重度盐碱土的水盐运移特征[J]. 灌溉排水学报, 2011, 30(4): 39-43. |
[44] | 王全九, 单鱼洋. 微咸水灌溉与土壤水盐调控研究进展[J]. 农业机械学报, 2015, 46(12): 117-126. |
[45] | 唐胜强, 佘冬立. 灌溉水质对土壤饱和导水率和入渗特性的影响[J]. 农业机械学报, 2016, 47(10): 108-114. |
[46] | 王震, 贾永刚, 连胜利. 不同矿化度水淋洗对盐碱土电阻率及水盐运移的影响试验[J]. 环保科技, 2016, 22(1): 58-64. |
[47] | 王全九, 许紫月, 单鱼洋, 张继红. 磁化微咸水矿化度对土壤水盐运移的影响[J]. 农业机械学报, 2017, 48(7): 198-206. |
[48] | 张余良, 王正祥, 廉晓娟, 等. 滨海盐土灌水脱盐动态的土壤质地和水质差异性研究[J]. 农业环境科学学报, 2010, 29(3): 515-520. |
[49] | 刘庆生, 刘高焕, 赵军. 质地和土地类型对土壤盐渍化水平的指示[J]. 中国农学通报, 2008, 24(1): 297-300. |
[50] | 李卓然, 虎胆?吐马尔白, 由国栋. 基于HYDRUS-2D滴灌棉田不同深度排盐沟土壤水盐运移的试验及模拟[J]. 石河子大学学报(自然科学版), 2018, 36(3): 376-384. |
[51] | 李开明, 刘洪光, 石培君, 李鑫鑫. 明沟排水条件下的土壤水盐运移模拟[J]. 干旱区研究, 2018, 35(6): 1299-1307. |
[52] | 胡钜鑫, 虎胆?吐马尔白, 李卓然, 穆丽德尔?托伙加. 基于HYDRUS-2D模型膜下滴灌棉田不同上口宽排盐浅沟下土壤水盐运移模拟[J]. 水利科学与寒区工程, 2019, 2(5): 1-9. |
[53] | 黄风, 严新军, 毛海涛, 王琳. 干旱区平原水库坝后排水沟对下游农田土壤水盐运移的影响[J]. 干旱地区农业研究, 2020, 38(2): 44-50+57. |
[54] | 郭全恩, 王益全, 马忠明, 等. 植物类型对土壤剖面盐分离子迁移以累积的影响[J]. 中国农业科学, 2011, 44(13): 2711-2720. |
[55] | 杜学军, 闫彬伟, 许可, 等. 盐碱地水盐运移理论及模型研究进展[J]. 土壤通报, 2021, 52(3): 713-721. |
[56] | Feddes, R.A. (1982) Simulation of Field Water Use and Crop Yield. In: Penning de Vries, F.W.T. and van Laar, H.H., Eds., Simulation of Plant Growth and Crop Production, PUDOC, Wageningen, 194-209. |
[57] | Zhang, Y.K. and Neuman, S.P. (1990) A Quasi-Linear Theory of Non-Fickian and Fickian Subsurface Dispersion: 2. Application to Anisotropic Media and the Borden Site. Water Resources Research, 26, 903-913.
https://doi.org/10.1029/WR026i005p00903 |
[58] | Dhananpala, A.H. (1992) Simulation of Soil Water Regime, Application of the SWATRE Model to Maize Crop on the Reddish Brown Earths in the Dry Zone of Sri Lanka. Agricultural Systems, 38, 61-73.
https://doi.org/10.1016/0308-521X(92)90087-5 |
[59] | Toride, N. and Leij, F.J. (1996) Convective-Dispersive Stream Tube Model for Field-Scale Solute Transport: I Moment Analysis. Soil Science Society of America Journal, 60, 342-352.
https://doi.org/10.2136/sssaj1996.03615995006000020004x |
[60] | 代涛. 西北干旱区水盐动态模拟及排水优化模型研究[D]: [硕士学位论文]. 武汉: 武汉大学, 2004. |