|
基于YOLOv3的建筑工地目标检测研究
|
Abstract:
[1] | 李瑞平, 杜瑞. 智慧工地管理平台在建筑工程中的应用探究[J]. 智能建筑与智慧城市, 2021(10): 60-61. |
[2] | Ren, S., He, K., Girshick, R., et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Net-works. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031 |
[3] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[4] | Redmon, J. and Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 6517-6525. https://doi.org/10.1109/CVPR.2017.690 |
[5] | Redmon, J. and Farhadi, A. (2018) YOLOv3: An In-cremental Improvement. |
[6] | Lehtinen, J., Munkberg, J., Hasselgren, J., et al. (2018) Noise2Noise: Learning Image Restoration without Clean Data. Proceedings of the 35th International Conference on Machine Learning, Stockholm, PMLR 80 2018. |
[7] | 刘迪, 贾金露, 赵玉卿, 钱育蓉. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13. |
[8] | An, X.H., Zhou, L., Liu, Z.G., Wang, C.Z., Li, P.F. and Li, Z.W. (2021) Dataset and Benchmark for Detecting Moving Objects in Construction Sites. Automation in Construction, 122, Article ID: 103482.
https://doi.org/10.1016/j.autcon.2020.103482 |