全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多尺度类注意力元学习的丝绸图案检测
Silk Pattern Detection Based on Meta Learning with Multi-Scale Class Attention

DOI: 10.12677/CSA.2021.1111282, PP. 2780-2787

Keywords: 小样本学习,多尺度,类注意力,目标检测
Few-Shot Learning
, Multiple Scale, Class Attention, Object Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国是丝绸的发源地,丝绸图案作为丝绸的主要元素承载了深远的历史文化。计算机视觉技术在丝绸图案的检测并不多见,主要因为丝绸图案类别繁多,总体数量不多,一般的目标检测技术无法在丝绸这样的小样本数据集上发挥良好的效果。针对该问题,本文提出了一种适用于小样本丝绸数据集的多尺度注意力目标检测算法,通过多尺度类向量为目标检测网络提供更多的分类信息,实现丝绸图案的检测任务。本文针对古代丝绸中常见图案进行数据收集和数据标定,并且利用提出的网络实现对不同年代的狮子和花卉进行实验。实验结果表明该方法可以实现小样本丝丝绸图案目标检测任务,而且效果优于其他小样本目标检测算法。
China is the birthplace of silk. Silk patterns, which are the main element of silk, carry far-reaching history and culture. Computer vision technology is rare in the detection of silk patterns, mainly because of the wide variety and small number of silk patterns. The general object detection methods can not play a good effect on a small sample data set such as silk. To solve this problem, this paper proposes a multi-scale attention target detection algorithm suitable for small sample silk data sets, which provides more classification information for the target detection network through multi-scale class vectors to realize the detection task of silk patterns. In this paper, data collection and data calibration are carried out for common patterns in ancient silk, and the proposed network is used to experiment lions and flowers in different ages. The experimental results show that this method can realize the target detection task of small sample silk pattern, and the effect is better than other small sample target detection algorithms.

References

[1]  Girshick, R. (2015) Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, 7-13 December 2015, 1440-1448.
https://doi.org/10.1109/ICCV.2015.169
[2]  Ren, S., He, K., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Proceedings of the 28th Interna-tional Conference on Neural Information Processing Systems, Vol. 1, Montreal, 7-12 December, 91-99.
[3]  He, K., Gkioxari, G., Dollár, P. and Girshick, R. (2017) Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vi-sion, Venice, 22-29 October 2017, 2980-2988.
https://doi.org/10.1109/ICCV.2017.322
[4]  Redmon, J., Divvala, S., Girshick, R., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91
[5]  Shafiee, M.J., Chywl, B., Li, F. and Wong, A. (2017) Fast YOLO: A Fast You Only Look Once System for Real-Time Embedded Object Detection in Video. Journal of Computational Vision and Im-aging Systems, 3.
https://doi.org/10.15353/vsnl.v3i1.171
[6]  Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016) SSD: Single Shot Multibox Detector. European Conference on Computer Vision, Amsterdam, 8-16 October 2016, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2
[7]  潘兴甲, 张旭龙, 董未名, 姚寒星, 徐常胜. 小样本目标检测的研究现状[J]. 南京信息工程大学学报(自然科学版), 2019, 11(6): 698-705.
[8]  李昊. 基于小样本的目标检测算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2020.
[9]  Zhang, T., Zhang, Y., Sun, X., Sun, H., Yan, M., Yang, X., et al. (2019) Comparison Network for One-Shot Conditional Object Detection. arXiv preprint arXiv: 1904.02317.
[10]  Karlinsky, L., Shtok, J., Harary, S., Schwartz, E., Aides, A., Feris, R., et al. (2019) Repmet: Representative-Based Metric Learning for Classi-fication and Few-Shot Object Detection. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 5197-5206.
https://doi.org/10.1109/CVPR.2019.00534
[11]  Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J. and Darrell, T. (2019) Few-Shot Object Detection via Feature Reweighting. Proceedings of the IEEE/CVF International Conference on Computer Vi-sion, Seoul, 27 October-2 November 2019, 8419-8428.
https://doi.org/10.1109/ICCV.2019.00851
[12]  Dong, X., Zheng, L., Ma, F., Yang, Y. and Meng, D. (2018) Few-Example Object Detection with Model Communication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1641-1654.
https://doi.org/10.1109/TPAMI.2018.2844853
[13]  Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X. and Lin, L. (2019) Meta R-CNN: Towards General Solver for Instance-Level Low-Shot Learning. Proceedings of the 2019 IEEE/CVF Internation-al Conference on Computer Vision, Seoul, 27 October-2 November 2019, 9577-9586.
https://doi.org/10.1109/ICCV.2019.00967
[14]  Wu, X., Sahoo, D., Hoi, S. (2020) Meta-RCNN: Meta Learning for Few-Shot Object Detection. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, 12-16 October 2020, 1679-1687.
https://doi.org/10.1145/3394171.3413832
[15]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual Learning for Image Recognition. Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[16]  Howard, A., Zhu, M, Chen B, Kalenichenko, D., Wang, W., Weyand, T., et al. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint arXiv:1704.04861.
[17]  Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv: 1409.1556.
[18]  董博文, 汪荣贵, 杨娟, 薛丽霞. 结合多尺度特征与掩码图网络的小样本学习[J/OL]. 计算机工程与应用, 2021: 1-16. http://kns.cnki.net/kcms/detail/11.2127.TP.20210416.1554.026.html, 2021-10-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133