|
基于多尺度类注意力元学习的丝绸图案检测
|
Abstract:
[1] | Girshick, R. (2015) Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[2] | Ren, S., He, K., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Proceedings of the 28th Interna-tional Conference on Neural Information Processing Systems, Vol. 1, Montreal, 7-12 December, 91-99. |
[3] | He, K., Gkioxari, G., Dollár, P. and Girshick, R. (2017) Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vi-sion, Venice, 22-29 October 2017, 2980-2988. https://doi.org/10.1109/ICCV.2017.322 |
[4] | Redmon, J., Divvala, S., Girshick, R., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/CVPR.2016.91 |
[5] | Shafiee, M.J., Chywl, B., Li, F. and Wong, A. (2017) Fast YOLO: A Fast You Only Look Once System for Real-Time Embedded Object Detection in Video. Journal of Computational Vision and Im-aging Systems, 3.
https://doi.org/10.15353/vsnl.v3i1.171 |
[6] | Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016) SSD: Single Shot Multibox Detector. European Conference on Computer Vision, Amsterdam, 8-16 October 2016, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2 |
[7] | 潘兴甲, 张旭龙, 董未名, 姚寒星, 徐常胜. 小样本目标检测的研究现状[J]. 南京信息工程大学学报(自然科学版), 2019, 11(6): 698-705. |
[8] | 李昊. 基于小样本的目标检测算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2020. |
[9] | Zhang, T., Zhang, Y., Sun, X., Sun, H., Yan, M., Yang, X., et al. (2019) Comparison Network for One-Shot Conditional Object Detection. arXiv preprint arXiv: 1904.02317. |
[10] | Karlinsky, L., Shtok, J., Harary, S., Schwartz, E., Aides, A., Feris, R., et al. (2019) Repmet: Representative-Based Metric Learning for Classi-fication and Few-Shot Object Detection. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 5197-5206.
https://doi.org/10.1109/CVPR.2019.00534 |
[11] | Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J. and Darrell, T. (2019) Few-Shot Object Detection via Feature Reweighting. Proceedings of the IEEE/CVF International Conference on Computer Vi-sion, Seoul, 27 October-2 November 2019, 8419-8428. https://doi.org/10.1109/ICCV.2019.00851 |
[12] | Dong, X., Zheng, L., Ma, F., Yang, Y. and Meng, D. (2018) Few-Example Object Detection with Model Communication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1641-1654.
https://doi.org/10.1109/TPAMI.2018.2844853 |
[13] | Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X. and Lin, L. (2019) Meta R-CNN: Towards General Solver for Instance-Level Low-Shot Learning. Proceedings of the 2019 IEEE/CVF Internation-al Conference on Computer Vision, Seoul, 27 October-2 November 2019, 9577-9586. https://doi.org/10.1109/ICCV.2019.00967 |
[14] | Wu, X., Sahoo, D., Hoi, S. (2020) Meta-RCNN: Meta Learning for Few-Shot Object Detection. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, 12-16 October 2020, 1679-1687.
https://doi.org/10.1145/3394171.3413832 |
[15] | He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual Learning for Image Recognition. Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[16] | Howard, A., Zhu, M, Chen B, Kalenichenko, D., Wang, W., Weyand, T., et al. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint arXiv:1704.04861. |
[17] | Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv: 1409.1556. |
[18] | 董博文, 汪荣贵, 杨娟, 薛丽霞. 结合多尺度特征与掩码图网络的小样本学习[J/OL]. 计算机工程与应用, 2021: 1-16. http://kns.cnki.net/kcms/detail/11.2127.TP.20210416.1554.026.html, 2021-10-28. |