|
基于时空图注意力网络的交通流量预测
|
Abstract:
[1] | 赵娜, 袁家斌, 徐晗. 智能交通系统综述[J]. 计算机科学, 2014, 41(11): 7-11+45. |
[2] | 杨春霞, 秦家鹏, 王庆, 李欣栩. 基于多车道加权融合的短时交通流预测研究[J]. 公路交通科技, 2021, 38(1): 121-127. |
[3] | Lippi, M., Ber-tini, M. and Frasconi, P. (2013) Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning. IEEE Transactions on Intelligent Transportation Systems, 14, 871-882. https://doi.org/10.1109/TITS.2013.2247040 |
[4] | 李磊, 张青苗, 赵军辉, 聂逸文. 基于改进CNN-LSTM组合模型的分时段短时交通流预测[J]. 应用科学学报, 2021, 39(2): 185-198. |
[5] | Li, Y., Yu, R., Shahabi, C. and Liu, Y. (2018) Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. International Conference on Learning Representations, Vancouver, 30 April-3 May 2018, 1-10.
https://openreview.net/forum?id=SJiHXGWAZ |
[6] | Yu, B., Yin, H. and Zhu, Z. (2018) Spatial-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, 13-19 July 2018, 3634-3640. https://doi.org/10.24963/ijcai.2018/505 |
[7] | Wu, Z., Pan, S., Long, G., Jiang, J. and Zhang, C. (2019) Graph Wave Net for Deep Spatial-Temporal Graph Modeling. Proceedings of the 28th International Joint Conference on Artificial In-telligence, Macao, 10-16 August 2019, 1907-1913. https://doi.org/10.24963/ijcai.2019/264 |
[8] | Guo, S., Lin, Y., Feng, N., Song, C. and Wan, H. (2019) Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 922-929.
https://doi.org/10.1609/aaai.v33i01.3301922 |
[9] | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 5998-6008. |
[10] | Veli?kovi?, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y. (2018) Graph Attention Networks. International Conference on Learning Representations, Vancouver, 30 April-3 May 2018, 1-12.
https://openreview.net/forum?id=rJXMpikCZ |
[11] | Feng, X., Guo, J., Qin, B., Liu, T. and Liu, Y. (2017) Effective Deep Memory Networks for Distant Supervised Relation Extraction. Proceedings of the 26th International Joint Con-ference on Artificial Intelligence, Melbourne, 19-25 August 2017, 4002-4008. https://doi.org/10.24963/ijcai.2017/559 |