|
目标检测的损失函数研究进展
|
Abstract:
[1] | Girshick, R., Donahue, J., Darrell, T., et al. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 580-587. https://doi.org/10.1109/CVPR.2014.81 |
[2] | Girshick, R. (2015) Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[3] | Ren, S., He, K., Girshick, R., et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Pro-posal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031 |
[4] | Cai, Z.W. and Vasconcelos, N. (2017) Cascade R-CNN: Delving into High Quality Object Detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 6154-6162.
https://doi.org/10.1109/CVPR.2018.00644 |
[5] | He, K.M., Georgia, G., Piotr, D., et al. (2018) Mask R-CNN. IEEE Transactions on Pattern Analysis & Machine Intelligence, 42, 386-397. https://doi.org/10.1109/TPAMI.2018.2844175 |
[6] | Pang, J.M., Chen, K., Shi, J.P., et al. (2019) Libra R-CNN: Towards Balanced Learning for Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition (CVPR), Long Beach, 15-20 June 2019, 821-830.
https://doi.org/10.1109/CVPR.2019.00091 |
[7] | Sun, P., Zhang, R.F., Jiang, Y., et al. (2021) Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 14449-14458. https://doi.org/10.1109/CVPR46437.2021.01422 |
[8] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[9] | Redmon, J. and Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 6517-6525. https://doi.org/10.1109/CVPR.2017.690 |
[10] | Redmon, J. and Farhadi, A. (2018) YOLOv3: An In-cremental Improvement. https://arxiv.org/abs/1804.02767 |
[11] | Bochkovskiy, A., et al. (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection.
https://arxiv.org/abs/2004.10934 |
[12] | Liu, W., Anguelov, D., Erhan, D., et al. (2016) SSD: Single Shot Multi-Box Detector. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2 |
[13] | Fu, C.Y., Liu, W., Ranga, A., et al. (2017) DSSD: Deconvolu-tional Single Shot Detector.
https://arxiv.org/abs/1701.06659 |
[14] | Carion, N., Massa, F., Synnaeve, G., et al. End-to-End Object Detection with Transformers.
https://arxiv.org/abs/2005.12872 |
[15] | 鲁晨光. Shannon公式改造[J]. 通信学报, 1991, 12(2): 95-96. |
[16] | Lin, T.Y., Goyal, P., Girshick, R., He, K.M., et al. (2018) Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 2999-3007.
https://doi.org/10.1109/ICCV.2017.324 |
[17] | Yu, J.H., Jiang, Y., Wang, Z.Y., et al. (2016) Unitbox: An Advanced Object Detection Network. Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, 15-19 October 2016, 516-520.
https://doi.org/10.1145/2964284.2967274 |
[18] | Rezatofighi, H., Tsoi, N., Gwak, J.Y., et al. (2019) Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 658-666. https://doi.org/10.1109/CVPR.2019.00075 |
[19] | Zheng, Z., Wang, P., Liu, W., et al. (2020) Distance-IOU Loss: Faster and Better Learning for Bounding Box Re-gression. The Association for the Advance of Artificial Intelligence (AAAI), New York, 7-12 February 2020, 12993-13000. |
[20] | Zhang, Y.F., Ren, W.Q., Zhang, Z., et al. (2021) Focal and Efficient IOU Loss for Accurate Bounding Box Regression.
https://arxiv.org/abs/2101.08158 |