|
Botanical Research 2021
烟草磷素营养吸收利用的分子生理研究进展与展望
|
Abstract:
磷素是植物生长发育必需的大量元素之一,在农业生产中其主要来源于不可再生的岩石磷酸盐。日益增长的食物需求加速了磷肥的消耗,亦使人们愈发重视磷高效品种的研发和培育。烟草是研究植物生物化学和分子生物学的常用模式作物,也是农业生产中种植面积很大的重要经济作物,其产量常依赖于大量乃至过量磷肥的施用。虽然植物响应磷饥饿的分子机制在水稻和拟南芥中已有相对较深入的研究,但是就烟草而言,在遗传学层面上发掘可应用于磷高效育种的关键基因(或分子元件)和在生物学机理上解析磷吸收利用及调控之间,仍存在着很大的差距。为此,本文总结了植物对磷吸收与利用的研究现状,以及近年来通过转基因技术提高烟草磷效率的主要进展,探讨了与磷吸收效率相关的研究成果在烟草中应用的可能性;最后,从分子生物学角度提出了提高烟草磷效率的可行性方法与技术策略。
Phosphorus (P) is one of the essential macro-elements for plant growth and development. In agricultural production, P mainly comes from non-renewable rock phosphate. Because the in-creasing demand for food has been accelerating the consumption of phosphorus fertilizer, people have paid more attention to the development and cultivation of phosphorus efficient varieties. Tobacco is used as a common model crop for the study of plant biochemistry and molecular biology; it is also an important cash crop with a large planting area in agriculture, and its yield often depends on the application of large or even excessive phosphorus fertilizer. Although the molecular mechanism of plant response to phosphorus starvation in rice and Arabidopsis has been relatively deeper investigated, in tobacco plant there is still a big gap between identification of genetic key genes(s) or molecular component(s) applicable to breeding of a P-efficient variety and dissection of a biological mechanism(s) of phosphorus acquisition and its regulation. In this paper, the current status of phosphorus uptake and utilization by plants was summarized, and some research advances of improving tobacco phosphorus efficiency by transgenic technology in recent years were also outlined. The possibility of the application in tobacco of certain research achievements related to phosphorus uptake efficiency was discussed. Finally, from the perspective of molecular biology, some feasible methods and technical strategies for the improvement of tobacco phosphorus use efficiency were proposed.
[1] | Mengel, K. and Kirkby, E.A. (1987) Principles of Plant Nutrition. 4th Edition, International Potash Institute, Bern. |
[2] | 李喜焕, 常文锁, 张彩英. 提高植物磷营养效率(候选)基因研究进展[J]. 植物遗传资源学报, 2012, 13(1): 83-97. |
[3] | 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408. |
[4] | 周冀衡, 朱小平, 王彦亭, 等. 烟草生理与生物化学[M]. 合肥: 中国科学技术大学出版社, 1996. |
[5] | 闫克玉, 赵铭钦. 烟草原料学[M]. 北京: 科学出版社, 2008. |
[6] | 王鹏, 李丽杰, 李江力, 等. 烤烟磷素营养状况与施用技术研究[J]. 土壤肥料, 1999(4): 30-32. |
[7] | 李晓举, 吴风光, 王豹祥, 等. 一株烤烟根际解磷细菌的鉴定及其在烤烟生产中的应用[J]. 河南农业科学, 2011, 40(6): 66-70. |
[8] | 魏嵬, 汪健, 毕庆文, 等. 双行凹型垄及地膜覆盖对烟叶和土壤中磷含量的影响[J]. 中国烟草科学, 2008, 29(3): 43-47. |
[9] | 龚丝雨. 烟草苗期耐低磷基因型筛选及生理机制研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2019. |
[10] | 孙秀营. 烟草磷效率差异品种的筛选及其转录组分析研究[D]: [硕士学位论文]. 北京: 中国农业大学, 2020. |
[11] | Narang, R.A., Bruene, A. and Altmann, T. (2000) Analysis of Phosphate Acquisition Efficiency in Different Arabidopsis Accessions. Plant Physiology, 124, 1786-1799. https://doi.org/10.1104/pp.124.4.1786 |
[12] | Ozturk, L., Eker, S., Torun, B., et al. (2005) Variation in Phosphorus Efficiency among 73 Bread and Durum Wheat Genotypes Grown in a Phosphorus-Deficient Calcareous Soil. Plant and Soil, 269, 69-80.
https://doi.org/10.1007/s11104-004-0469-z |
[13] | Wang, X.R., Shen, J.B. and Liao, H. (2010) Acquisition or Utilization, Which Is More Critical for Enhancing Phosphorus Efficiency in Modern Crops? Plant Science, 179, 302-306. https://doi.org/10.1016/j.plantsci.2010.06.007 |
[14] | Huang, C.Y., Shirley, N., Genc, Y., et al. (2011) Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, IPS1, in Barley. Plant Physiology, 156, 1217-1229.
https://doi.org/10.1104/pp.111.178459 |
[15] | Gu, M.A., Chen, A.Q., Sun, S.B., et al. (2016) Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? Molecular Plant (Cell Press), 9, 396-416.
https://doi.org/10.1016/j.molp.2015.12.012 |
[16] | Goncalves, B.X., Lima-Melo, Y., Maraschin, F.D., et al. (2020) Phosphate Starvation Responses in Crop Roots: From Well-Known Players to Novel Candidates. Environmental & Experimental Botany, 178, Article ID: 104162.
https://doi.org/10.1016/j.envexpbot.2020.104162 |
[17] | Sega, P. and Pacak, A. (2019) Plant PHR Transcription Factors: Put on a Map. Genes, 10, Article No. 1018.
https://doi.org/10.3390/genes10121018 |
[18] | Ham, B. K., Chen, J.Y., Yan, Y., et al. (2018) Insights into Plant Phosphate Sensing and Signaling. Current Opinion in Biotechnology, 49, 1-9. https://doi.org/10.1016/j.copbio.2017.07.005 |
[19] | Guo, M., Ruan, W., Li, C., et al. (2015) Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 168, 1762-U1134.
https://doi.org/10.1104/pp.15.00736 |
[20] | Rubio, V., Linhares, F., Solano, R., et al. (2001) A Conserved MYB Transcription Factor Involved in Phosphate Starvation Signaling Both in Vascular Plants and in Unicellular Algae. Genes & Development, 15, 2122-2133.
https://doi.org/10.1101/gad.204401 |
[21] | Zhong, Y.J., Wang, Y.G., Guo, J.F., et al. (2018) Rice SPX6 Negatively Regulates the Phosphate Starvation Response through Suppression of the Transcription Factor PHR2. New Phytologist, 219, 135-148.
https://doi.org/10.1111/nph.15155 |
[22] | Hu, B., Jiang, Z.M., Wang, W., et al. (2019) Nitrate-NRT1.1B-SPX4 Cascade Integrates Nitrogen and Phosphorus Signaling Networks in Plants. Nature Plants, 5, Article No. 637. https://doi.org/10.1038/s41477-019-0420-1 |
[23] | Dong, J.S., Ma, G.J., Sui, L.Q., et al. (2019) Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Molecular Plant (Cell Press), 12, 1463-1473. https://doi.org/10.1016/j.molp.2019.08.002 |
[24] | Balzergue, C., Dartevelle, T., Godon, C., et al. (2017) Low Phosphate Activates STOP1-ALMT1 to Rapidly Inhibit Root Cell Elongation. Nature Communications, 8, Article No. 15300. https://doi.org/10.1038/ncomms15300 |
[25] | Mora-Maci?as, J., Ojeda-Rivera, J.O., Gutie?rrez-Alani?s, D., et al. (2017) Malate-Dependent Fe Accumulation Is a Critical Checkpoint in the Root Developmental Response to Low Phosphate. Proceedings of the National Academy of Sciences of the United States of America, 114, E3563-E3572. https://doi.org/10.1073/pnas.1701952114 |
[26] | Huang, T.K., Han, C.L., Lin, S.I., et al. (2013) Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in Arabidopsis Roots. Plant Cell, 25, 4044-4060.
https://doi.org/10.1105/tpc.113.115998 |
[27] | Park, B.S., Seo, J.S. and Chua, N.H. (2014) Nitrogen Limitation Adaption Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of Arabidopsis Phosphate Homeostasis. Plant Cell, 26, 454-464. https://doi.org/10.1105/tpc.113.120311 |
[28] | Bieleski, R.L. (1973) Phosphate Pool, Phosphate Transport, Phosphate Availability. Annual Review of Plant Physiology and Plant Molecular Biology, 24, 225-252. https://doi.org/10.1146/annurev.pp.24.060173.001301 |
[29] | Liu, T.Y, Huang, T.K., Yang, S.Y., et al. (2016) Identification of Plant Vacuolar Transporters Mediating Phosphate Storage. Nature Communications, 7, 105-108. https://doi.org/10.1038/ncomms11095 |
[30] | Veneklaas, E.J., Lambers, H., Bragg, J., et al. (2012) Opportunities for Improving Phosphorus-Use Efficiency in Crop Plants. New Phytologist, 195, 306-320. https://doi.org/10.1111/j.1469-8137.2012.04190.x |
[31] | Himelblau, E. and Amasino, R.M. (2001) Nutrients Remobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. Journal of Plant Physiology, 158, 1317-1323. https://doi.org/10.1078/0176-1617-00608 |
[32] | Robinson, W.D., Carson, I., Ying, S., et al. (2012) Eliminating the Purple Acid Phosphatase AtPAP26 in Arabidopsis thaliana Delays Leaf Senescence and Impairs Phosphorus Remobilization. New Phytologist, 196, 1024-1029.
https://doi.org/10.1111/nph.12006 |
[33] | Sierro, N., Battey, J., Ouadi, S., et al. (2014) The Tobacco Genome Sequence and Its Comparison with Those of Tomato and Potato. Nature Communications, 5, 107-127. https://doi.org/10.1038/ncomms4833 |
[34] | Edwards, K.D., Fernandez-Pozo, N., Drake-Stowe, K., et al. (2017) A Reference Genome for Nicotiana tabacum Enables Map-Based Cloning of Homeologous Loci Implicated in Nitrogen Utilization Efficiency. BMC Genomics, 18, Article No. 448. https://doi.org/10.1186/s12864-017-3791-6 |
[35] | Rosa, A.D., Watson-Lazowski, A., Ev Ans, J.R., et al. (2020) Genome-Wide Identification and Characterisation of Aquaporins in Nicotiana tabacum and Their Relationships with Other Solanaceae Species. BMC Plant Biology, 20, Article No. 266. https://doi.org/10.1186/s12870-020-02412-5 |
[36] | Ahmed, J., Mercx, S., Boutry, M., et al. (2020) Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. International Journal of Molecular Sciences, 21, Article No. 4743. https://doi.org/10.3390/ijms21134743 |
[37] | Ding, A., Marowa, P. and Kong, Y.Z. (2016) Genome-Wide Identification of the Expansin Gene Family in Tobacco (Nicotiana tabacum). Molecular Genetics & Genomics. Genomics, 291, 1891-1907.
https://doi.org/10.1007/s00438-016-1226-8 |
[38] | Nawaz, Z., Kaleem, U.K., Raqeeb, U., et al. (2019) Ge-nome-Wide Identification, Evolution and Expression Analysis of Cyclic Nucleotide-Gated Channels in Tobacco (Nicotiana tabacum L.). Genomics, 111, 142-158.
https://doi.org/10.1016/j.ygeno.2018.01.010 |
[39] | Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. New Phytologist, 173, 11-26. https://doi.org/10.1111/j.1469-8137.2006.01935.x |
[40] | Karandashov, V. and Bucher, M. (2005) Symbiotic Phosphate Transport in Arbuscular Mycorrhizas. Trends in Plant Science, 10, 22-29. https://doi.org/10.1016/j.tplants.2004.12.003 |
[41] | Mudge, S.R., Rae, A.L., Diatloff, E., et al. (2002) Expression Analysis Suggests Novel Roles for Members of the Pht1 Family of Phosphate Transporters in Arabidopsis. The Plant Journal, 31, 341-353.
https://doi.org/10.1046/j.1365-313X.2002.01356.x |
[42] | Kai, M., Takazumi, K., Adachi, H., et al. (2002) Cloning and Characterization of Four Phosphate Transporter cDNAs in Tobacco. Plant Science, 163, 837-846. https://doi.org/10.1016/S0168-9452(02)00233-9 |
[43] | Chen, A.Q., Hu, J., Sun, S.B., et al. (2007) Conservation and Divergence of Both Phosphate- and Mycorrhiza-Regulated Physiological Responses and Expression Patterns of Phosphate Transporters in Solanaceous Species. New Phytologist, 173, 817-831. https://doi.org/10.1111/j.1469-8137.2006.01962.x |
[44] | Tan, Z.J., Hu, Y.L. and Lin, Z.P. (2012) Expression of NtPT5 Is Correlated with the Degree of Colonization in Tobacco Roots Inoculated with Glomus etunicatum. Plant Molecular Biology Reporter, 30, 885-893.
https://doi.org/10.1007/s11105-011-0402-6 |
[45] | 吴艳, 刘小翠, 彭磊, 等. 马尾松PAP1基因在烟草上的遗传转化及功能分析[J]. 农业生物技术学报, 2017, 25(6): 1023-1032. |
[46] | 刘小兰. 转WRKY3基因烟草苗期对磷胁迫的生理响应及其差异蛋白研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2013. |
[47] | Park, M.R., Baek, S.H., Reyes, B., et al. (2007) Overexpression of a High-Affinity Phosphate Transporter Gene from Tobacco (NtPT1) Enhances Phosphate Uptake and Accumulation in Transgenic Rice Plants. Plant Soil, 292, 259-269.
https://doi.org/10.1007/s11104-007-9222-8 |
[48] | Mengel, K. and Kirkby, E.A. (1987) Principles of Plant Nutrition. 4th Edition, International Potash Institute, Bern. |
[49] | 李喜焕, 常文锁, 张彩英. 提高植物磷营养效率(候选)基因研究进展[J]. 植物遗传资源学报, 2012, 13(1): 83-97. |
[50] | 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408. |
[51] | 周冀衡, 朱小平, 王彦亭, 等. 烟草生理与生物化学[M]. 合肥: 中国科学技术大学出版社, 1996. |
[52] | 闫克玉, 赵铭钦. 烟草原料学[M]. 北京: 科学出版社, 2008. |
[53] | 王鹏, 李丽杰, 李江力, 等. 烤烟磷素营养状况与施用技术研究[J]. 土壤肥料, 1999(4): 30-32. |
[54] | 李晓举, 吴风光, 王豹祥, 等. 一株烤烟根际解磷细菌的鉴定及其在烤烟生产中的应用[J]. 河南农业科学, 2011, 40(6): 66-70. |
[55] | 魏嵬, 汪健, 毕庆文, 等. 双行凹型垄及地膜覆盖对烟叶和土壤中磷含量的影响[J]. 中国烟草科学, 2008, 29(3): 43-47. |
[56] | 龚丝雨. 烟草苗期耐低磷基因型筛选及生理机制研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2019. |
[57] | 孙秀营. 烟草磷效率差异品种的筛选及其转录组分析研究[D]: [硕士学位论文]. 北京: 中国农业大学, 2020. |
[58] | Narang, R.A., Bruene, A. and Altmann, T. (2000) Analysis of Phosphate Acquisition Efficiency in Different Arabidopsis Accessions. Plant Physiology, 124, 1786-1799. https://doi.org/10.1104/pp.124.4.1786 |
[59] | Ozturk, L., Eker, S., Torun, B., et al. (2005) Variation in Phosphorus Efficiency among 73 Bread and Durum Wheat Genotypes Grown in a Phosphorus-Deficient Calcareous Soil. Plant and Soil, 269, 69-80.
https://doi.org/10.1007/s11104-004-0469-z |
[60] | Wang, X.R., Shen, J.B. and Liao, H. (2010) Acquisition or Utilization, Which Is More Critical for Enhancing Phosphorus Efficiency in Modern Crops? Plant Science, 179, 302-306. https://doi.org/10.1016/j.plantsci.2010.06.007 |
[61] | Huang, C.Y., Shirley, N., Genc, Y., et al. (2011) Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, IPS1, in Barley. Plant Physiology, 156, 1217-1229.
https://doi.org/10.1104/pp.111.178459 |
[62] | Gu, M.A., Chen, A.Q., Sun, S.B., et al. (2016) Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? Molecular Plant (Cell Press), 9, 396-416.
https://doi.org/10.1016/j.molp.2015.12.012 |
[63] | Goncalves, B.X., Lima-Melo, Y., Maraschin, F.D., et al. (2020) Phosphate Starvation Responses in Crop Roots: From Well-Known Players to Novel Candidates. Environmental & Experimental Botany, 178, Article ID: 104162.
https://doi.org/10.1016/j.envexpbot.2020.104162 |
[64] | Sega, P. and Pacak, A. (2019) Plant PHR Transcription Factors: Put on a Map. Genes, 10, Article No. 1018.
https://doi.org/10.3390/genes10121018 |
[65] | Ham, B. K., Chen, J.Y., Yan, Y., et al. (2018) Insights into Plant Phosphate Sensing and Signaling. Current Opinion in Biotechnology, 49, 1-9. https://doi.org/10.1016/j.copbio.2017.07.005 |
[66] | Guo, M., Ruan, W., Li, C., et al. (2015) Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 168, 1762-U1134.
https://doi.org/10.1104/pp.15.00736 |
[67] | Rubio, V., Linhares, F., Solano, R., et al. (2001) A Conserved MYB Transcription Factor Involved in Phosphate Starvation Signaling Both in Vascular Plants and in Unicellular Algae. Genes & Development, 15, 2122-2133.
https://doi.org/10.1101/gad.204401 |
[68] | Zhong, Y.J., Wang, Y.G., Guo, J.F., et al. (2018) Rice SPX6 Negatively Regulates the Phosphate Starvation Response through Suppression of the Transcription Factor PHR2. New Phytologist, 219, 135-148.
https://doi.org/10.1111/nph.15155 |
[69] | Hu, B., Jiang, Z.M., Wang, W., et al. (2019) Nitrate-NRT1.1B-SPX4 Cascade Integrates Nitrogen and Phosphorus Signaling Networks in Plants. Nature Plants, 5, Article No. 637. https://doi.org/10.1038/s41477-019-0420-1 |
[70] | Dong, J.S., Ma, G.J., Sui, L.Q., et al. (2019) Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Molecular Plant (Cell Press), 12, 1463-1473. https://doi.org/10.1016/j.molp.2019.08.002 |
[71] | Balzergue, C., Dartevelle, T., Godon, C., et al. (2017) Low Phosphate Activates STOP1-ALMT1 to Rapidly Inhibit Root Cell Elongation. Nature Communications, 8, Article No. 15300. https://doi.org/10.1038/ncomms15300 |
[72] | Mora-Maci?as, J., Ojeda-Rivera, J.O., Gutie?rrez-Alani?s, D., et al. (2017) Malate-Dependent Fe Accumulation Is a Critical Checkpoint in the Root Developmental Response to Low Phosphate. Proceedings of the National Academy of Sciences of the United States of America, 114, E3563-E3572. https://doi.org/10.1073/pnas.1701952114 |
[73] | Huang, T.K., Han, C.L., Lin, S.I., et al. (2013) Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in Arabidopsis Roots. Plant Cell, 25, 4044-4060.
https://doi.org/10.1105/tpc.113.115998 |
[74] | Park, B.S., Seo, J.S. and Chua, N.H. (2014) Nitrogen Limitation Adaption Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of Arabidopsis Phosphate Homeostasis. Plant Cell, 26, 454-464. https://doi.org/10.1105/tpc.113.120311 |
[75] | Bieleski, R.L. (1973) Phosphate Pool, Phosphate Transport, Phosphate Availability. Annual Review of Plant Physiology and Plant Molecular Biology, 24, 225-252. https://doi.org/10.1146/annurev.pp.24.060173.001301 |
[76] | Liu, T.Y, Huang, T.K., Yang, S.Y., et al. (2016) Identification of Plant Vacuolar Transporters Mediating Phosphate Storage. Nature Communications, 7, 105-108. https://doi.org/10.1038/ncomms11095 |
[77] | Veneklaas, E.J., Lambers, H., Bragg, J., et al. (2012) Opportunities for Improving Phosphorus-Use Efficiency in Crop Plants. New Phytologist, 195, 306-320. https://doi.org/10.1111/j.1469-8137.2012.04190.x |
[78] | Himelblau, E. and Amasino, R.M. (2001) Nutrients Remobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. Journal of Plant Physiology, 158, 1317-1323. https://doi.org/10.1078/0176-1617-00608 |
[79] | Robinson, W.D., Carson, I., Ying, S., et al. (2012) Eliminating the Purple Acid Phosphatase AtPAP26 in Arabidopsis thaliana Delays Leaf Senescence and Impairs Phosphorus Remobilization. New Phytologist, 196, 1024-1029.
https://doi.org/10.1111/nph.12006 |
[80] | Sierro, N., Battey, J., Ouadi, S., et al. (2014) The Tobacco Genome Sequence and Its Comparison with Those of Tomato and Potato. Nature Communications, 5, 107-127. https://doi.org/10.1038/ncomms4833 |
[81] | Edwards, K.D., Fernandez-Pozo, N., Drake-Stowe, K., et al. (2017) A Reference Genome for Nicotiana tabacum Enables Map-Based Cloning of Homeologous Loci Implicated in Nitrogen Utilization Efficiency. BMC Genomics, 18, Article No. 448. https://doi.org/10.1186/s12864-017-3791-6 |
[82] | Rosa, A.D., Watson-Lazowski, A., Ev Ans, J.R., et al. (2020) Genome-Wide Identification and Characterisation of Aquaporins in Nicotiana tabacum and Their Relationships with Other Solanaceae Species. BMC Plant Biology, 20, Article No. 266. https://doi.org/10.1186/s12870-020-02412-5 |
[83] | Ahmed, J., Mercx, S., Boutry, M., et al. (2020) Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. International Journal of Molecular Sciences, 21, Article No. 4743. https://doi.org/10.3390/ijms21134743 |
[84] | Ding, A., Marowa, P. and Kong, Y.Z. (2016) Genome-Wide Identification of the Expansin Gene Family in Tobacco (Nicotiana tabacum). Molecular Genetics & Genomics. Genomics, 291, 1891-1907.
https://doi.org/10.1007/s00438-016-1226-8 |
[85] | Nawaz, Z., Kaleem, U.K., Raqeeb, U., et al. (2019) Ge-nome-Wide Identification, Evolution and Expression Analysis of Cyclic Nucleotide-Gated Channels in Tobacco (Nicotiana tabacum L.). Genomics, 111, 142-158.
https://doi.org/10.1016/j.ygeno.2018.01.010 |
[86] | Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. New Phytologist, 173, 11-26. https://doi.org/10.1111/j.1469-8137.2006.01935.x |
[87] | Karandashov, V. and Bucher, M. (2005) Symbiotic Phosphate Transport in Arbuscular Mycorrhizas. Trends in Plant Science, 10, 22-29. https://doi.org/10.1016/j.tplants.2004.12.003 |
[88] | Mudge, S.R., Rae, A.L., Diatloff, E., et al. (2002) Expression Analysis Suggests Novel Roles for Members of the Pht1 Family of Phosphate Transporters in Arabidopsis. The Plant Journal, 31, 341-353.
https://doi.org/10.1046/j.1365-313X.2002.01356.x |
[89] | Kai, M., Takazumi, K., Adachi, H., et al. (2002) Cloning and Characterization of Four Phosphate Transporter cDNAs in Tobacco. Plant Science, 163, 837-846. https://doi.org/10.1016/S0168-9452(02)00233-9 |
[90] | Chen, A.Q., Hu, J., Sun, S.B., et al. (2007) Conservation and Divergence of Both Phosphate- and Mycorrhiza-Regulated Physiological Responses and Expression Patterns of Phosphate Transporters in Solanaceous Species. New Phytologist, 173, 817-831. https://doi.org/10.1111/j.1469-8137.2006.01962.x |
[91] | Tan, Z.J., Hu, Y.L. and Lin, Z.P. (2012) Expression of NtPT5 Is Correlated with the Degree of Colonization in Tobacco Roots Inoculated with Glomus etunicatum. Plant Molecular Biology Reporter, 30, 885-893.
https://doi.org/10.1007/s11105-011-0402-6 |
[92] | 吴艳, 刘小翠, 彭磊, 等. 马尾松PAP1基因在烟草上的遗传转化及功能分析[J]. 农业生物技术学报, 2017, 25(6): 1023-1032. |
[93] | 刘小兰. 转WRKY3基因烟草苗期对磷胁迫的生理响应及其差异蛋白研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2013. |
[94] | Park, M.R., Baek, S.H., Reyes, B., et al. (2007) Overexpression of a High-Affinity Phosphate Transporter Gene from Tobacco (NtPT1) Enhances Phosphate Uptake and Accumulation in Transgenic Rice Plants. Plant Soil, 292, 259-269.
https://doi.org/10.1007/s11104-007-9222-8 |