|
艾滋病病毒感染与肠道菌群之间的相互作用关系研究进展
|
Abstract:
HIV的感染与肠道屏障被破坏和微生物产物的移位密切相关。因HIV感染而引起的肠道菌群失调愈发受到关注。目前研究主要致力于理解HIV感染后肠道微生态的变化情况,即肠道微生物组的构成以及它们是如何与黏膜免疫细胞相互作用来引起全身炎症的。本文主要综述了目前研究HIV感染与微生态及其失调的关系和失调与HIV发病机理的内在联系,以便更好地理解微生态相关的免疫激活和驱动全身炎症反应的机制,从而制定不同的治疗方案来改善肠道菌群失调,进而提高HIV感染者的整体健康。
HIV infection is closely associated with the disruption of the intestinal barrier and the displacement of microbial products. Intestinal microflora dysregulation caused by HIV infection are gaining attention. The current research is focused on understanding the changes in gut microbiome following HIV infection including the composition of the gut microbiome and how they interact with mucosal immune cells to cause systemic inflammation. This paper reviews the relevance of the present study of the relationship between HIV infection and intestinal microflora dysregulation and the intrinsic link between dysregulation and the pathogenesis of AIDS. The data will gain a better understanding the mechanisms of the microecology-related immune activation and drive systemic inflammatory response. Thus formulate differences treatment options to improve intestinal microbiosis, and then improve the overall health of people infected with HIV.
[1] | Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340. https://doi.org/10.1016/j.cell.2016.01.013 |
[2] | Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267. https://doi.org/10.1126/science.1223813 |
[3] | Frank, D.N., Robertson, C.E., Hamm, C.M., Kpadeh, Z., Zhang, T., Chen, H., et al. (2011) Disease Phenotype and Genotype Are Associated with Shifts in Intestinal-Associated Microbiota in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 17, 179-184. https://doi.org/10.1002/ibd.21339 |
[4] | Frank, D.N., St Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N. and Pace, N.R. (2007) Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780-13785.
https://doi.org/10.1073/pnas.0706625104 |
[5] | Li, E., Hamm, C.M., Gulati, A.S., Sartor, R.B., Chen, H., Wu, X., et al. (2012) Inflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition. PLoS ONE, 7, e26284. https://doi.org/10.1371/journal.pone.0026284 |
[6] | Brown, K., DeCoffe, D., Molcan, E. and Gibson, D.L. (2012) Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 4, 1095-1119. https://doi.org/10.3390/nu4081095 |
[7] | John, G.K. and Mullin, G.E. (2016) The Gut Microbiome and Obesity. Current Oncology Reports, 18, 45.
https://doi.org/10.1007/s11912-016-0528-7 |
[8] | Alkanani, A.K., Hara, N., Gottlieb, P.A., Ir, D., Robertson, C.E., Wagner, B.D., et al. (2015) Alterations in Intestinal Microbiota Correlate with Susceptibility to Type 1 Diabetes. Diabetes, 64, 3510-3520.
https://doi.org/10.2337/db14-1847 |
[9] | Markle, J.G., Frank, D.N., Mortin-Toth, S., Robertson, C.E., Feazel, L.M., Rolle-Kampczyk, U., et al. (2013) Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science, 339, 1084-1088.
https://doi.org/10.1126/science.1233521 |
[10] | Geuking, M.B., Koller, Y., Rupp, S. and McCoy, K.D. (2014) The Interplay between the Gut Microbiota and the Immune System. Gut Microbes, 5, 411-418. https://doi.org/10.4161/gmic.29330 |
[11] | McDermott, A.J. and Huffnagle, G.B. (2014) The Microbiome and Regulation of Mucosal Immunity. Immunology, 142, 24-31. https://doi.org/10.1111/imm.12231 |
[12] | Paiardini, M. and Müller-Trutwin, M. (2013) HIV-Associated Chronic Immune Activation. Immunological Reviews, 254, 78-101. https://doi.org/10.1111/imr.12079 |
[13] | Brenchley, J.M. (2004) CD4+ T Cell Depletion during All Stages of HIV Disease Occurs Predominantly in the Gastrointestinal Tract. Journal of Experimental Medicine, 200, 749-759. https://doi.org/10.1084/jem.20040874 |
[14] | Dinh, D.M., Volpe, G.E., Duffalo, C., Bhalchandra, S., Tai, A.K., Kane, A.V., et al. (2014) The Intestinal Microbiota, Microbial Translocation and Systemic Inflammation in Chronic HIV Infection. The Journal of Infectious Diseases, 211, 19-27. https://doi.org/10.1093/infdis/jiu409 |
[15] | Kim, C.J., Nazli, A., Rojas, O.L., Chege, D., Alidina, Z., Huibner, S., et al. (2012) A Role for Mucosal IL-22 Production and Th22 Cells in HIV-Associated Mucosal Immunopathogenesis. Mucosal Immunology, 5, 670-680.
https://doi.org/10.1038/mi.2012.72 |
[16] | Brenchley, J.M., Paiardini, M., Knox, K.S., Asher, A.I., Cervasi, B., Asher, T.E., et al. (2008) Differential Th17 CD4 T-Cell Depletion in Pathogenic and Nonpathogenic Lentiviral Infections. Blood, 112, 2826-2835.
https://doi.org/10.1182/blood-2008-05-159301 |
[17] | Brenchley, J.M., Price, D.A., Schacker, T.W., Asher, T.E., Silvestri, G., Rao, S., et al. (2006) Microbial Translocation Is a Cause of Systemic Immune Activation in Chronic HIV Infection. Nature Medicine, 12, 1365-1371.
https://doi.org/10.1038/nm1511 |
[18] | Marchetti, G., Tincati, C. and Silvestri, G. (2013) Microbial Translocation in the Pathogenesis of HIV Infection and AIDS. Clinical Microbiology Reviews, 26, 2-18. https://doi.org/10.1128/CMR.00050-12 |
[19] | Zevin, A.S., McKinnon, L., Burgener, A. and Klatt, N.R. (2016) Microbial Translocation and Microbiome Dysbiosis in HIV-Associated Immune Activation. Current Opinion in HIV and AIDS, 11, 182-190.
https://doi.org/10.1097/COH.0000000000000234 |
[20] | Hsu, D.C. and Sereti, I. (2016) Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs, 76, 533-549. https://doi.org/10.1007/s40265-016-0546-7 |
[21] | Moeller, A.H., Shilts, M., Li, Y., Rudicell, R.S., Lonsdorf, E.V., Pusey, A.E., Wilson, M.L., Hahn, B.H. and Ochman, H. (2013) SIV-Induced Instability of the Chimpanzee Gut Microbiome. Cell Host & Microbe, 14, 340-345.
https://doi.org/10.1016/j.chom.2013.08.005 |
[22] | Lozupone, C.A., Li, M., Campbell, T.B., Flores, S.C., Linderman, D., Gebert, M.J., Knight, R., Fontenot, A.P. and Palmer, B.E. (2013) Alterations in the Gut Microbiota Associated with HIV-1 Infection. Cell Host & Microbe, 14, 329-339. https://doi.org/10.1016/j.chom.2013.08.006 |
[23] | Gori, A., Tincati, C., Rizzardini, G., Torti, C., Quirino, T., Haarman, M., et al. (2008) Early Impairment of Gut Function and Gut Flora Supporting a Role for Alteration of Gastrointestinal Mucosa in Human Immunodeficiency Virus Pathogenesis. Journal of Clinical Microbiology, 46, 757-758. https://doi.org/10.1128/JCM.01729-07 |
[24] | Ellis, C.L., Ma, Z.M., Mann, S.K., Li, C.S., Wu, J., Knight, T.H., et al. (2011) Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation. JAIDS Journal of Acquired Immune Deficiency Syndromes, 57, 363-370.
https://doi.org/10.1097/QAI.0b013e31821a603c |
[25] | Zilberman-Schapira, G., Zmora, N., Itav, S., Bashiardes, S., Elinav, H. and Elinav, E. (2016) The Gut Microbiome in Human Immunodeficiency Virus Infection. BMC Medicine, 14, 83. https://doi.org/10.1186/s12916-016-0625-3 |
[26] | Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Dong, Z., Hecht, D.K., et al. (2014) An Altered Intestinal Mucosal Microbiome in HIV-1 Infection Is Associated with Mucosal and Systemic Immune Activation and Endotoxemia. Mucosal Immunology, 7, 983-994. https://doi.org/10.1038/mi.2013.116 |
[27] | Mutlu, E.A., Keshavarzian, A., Losurdo, J., Swanson, G., Siewe, B., Forsyth, C., et al. (2014) A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects. PLOS Pathogens, 10, e1003829. https://doi.org/10.1371/journal.ppat.1003829 |
[28] | Sun, Y., Ma, Y., Lin, P., Tang, Y.W., Yang, L., Shen, Y., et al. (2016) Fecal Bacterial Microbiome Diversity in Chronic HIV-Infected Patients in China. Emerging Microbes & Infections, 5, e31. https://doi.org/10.1038/emi.2016.25 |
[29] | Yang, L., Poles, M.A., Fisch, G.S., Ma, Y., Nossa, C., Phelan, J.A., et al. (2016) HIV-Induced Immunosuppression Is Associated with Colonization of the Proximal Gut by Environmental Bacteria. AIDS, 30, 19-29.
https://doi.org/10.1097/QAD.0000000000000935 |
[30] | Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Gianella, S., Siewe, B., et al. (2016) Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T-Cell Activation in Untreated HIV-1 Infection. Mucosal Immunology, 9, 24-37. https://doi.org/10.1038/mi.2015.33 |
[31] | Perez-Santiago, J., Gianella, S., Massanella, M., Spina, C.A., Karris, M.Y., Var, S.R., et al. (2013) Gut Lactobacillales Are Associated with Higher CD4 and Less Microbial Translocation during HIV Infection. AIDS, 27, 1921-1931.
https://doi.org/10.1097/QAD.0b013e3283611816 |
[32] | Nowak, P., Troseid, M., Avershina, E., Barqasho, B., Neogi, U., Holm, K., et al. (2015) Gut Microbiota Diversity Predicts Immune Status in HIV-1 Infection. AIDS, 29, 2409-2418. https://doi.org/10.1097/QAD.0000000000000869 |
[33] | Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J. (2008) Review Article: The Role of Butyrate on Colonic Function. Alimentary Pharmacology & Therapeutics, 27, 104-119.
https://doi.org/10.1111/j.1365-2036.2007.03562.x |
[34] | Macfarlane, S. and Macfarlane, G.T. (2003) Regulation of Short-Chain Fatty Acid Production. Proceedings of the Nutrition Society, 62, 67-72. https://doi.org/10.1079/PNS2002207 |
[35] | Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x |
[36] | McHardy, I.H., Li, X., Tong, M., Ruegger, P., Jacobs, J., Borneman, J., et al. (2013) HIV Infection Is Associated with Compositional and Functional Shifts in the Rectal Mucosal Microbiota. Microbiome, 1, 26.
https://doi.org/10.1186/2049-2618-1-26 |
[37] | Monaco, C.L., Gootenberg, D.B., Zhao, G., Handley, S.A., Ghebremichael, M.S., Lim, E.S., et al. (2016) Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe, 19, 311-322. https://doi.org/10.1016/j.chom.2016.02.011 |
[38] | Troy, E.B. and Kasper, D.L. (2010) Beneficial Effects of Bacteroides fragilis Polysaccharides on the Immune System. Frontiers in Bioscience (Landmark Ed), 15, 25-34. https://doi.org/10.2741/3603 |
[39] | Noguera-Julian, M., Rocafort, M., Guillén, Y., Rivera, J., Casadellà, M., Nowak, P., et al. (2016) Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine, 5, 135-146.
https://doi.org/10.1016/j.ebiom.2016.01.032 |
[40] | Vazquez-Castellanos, J.F., Serrano-Villar, S., Latorre, A., Artacho, A., Ferrus, M.L., Madrid, N., et al. (2014) Altered Metabolism of Gut Microbiota Contributes to Chronic Immune Activation in HIV-Infected Individuals. Mucosal Immunology, 8, 760-772. https://doi.org/10.1038/mi.2014.107 |
[41] | Vujkovic-Cvijin, I., Dunham, R.M., Iwai, S., Maher, M.C., Albright, R.G., Broadhurst, M.J., et al. (2013) Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism. Science Translational Medicine, 5, 193ra191. https://doi.org/10.1126/scitranslmed.3006438 |
[42] | Paquin-Proulx, D., Ching, C., Vujkovic-Cvijin, I., Fadrosh, D., Loh, L., Huang, Y., et al. (2016) Bacteroides Are Associated with GALT iNKT Cell Function and Reduction of Microbial Translocation in HIV-1 Infection. Mucosal Immunology, 10, 69-78. https://doi.org/10.1038/mi.2016.34 |
[43] | Favre, D., Mold, J., Hunt, P.W., Kanwar, B., Loke, P., Seu, L., et al. (2010) Tryptophan Catabolism by Indoleamine 2, 3-Dioxygenase 1 Alters the Balance of TH17 to Regulatory T Cells in HIV Disease. Science Translational Medicine, 2, 32ra36. https://doi.org/10.1126/scitranslmed.3000632 |
[44] | Brown, J.M. and Hazen, S.L. (2015) The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annual Review of Medicine, 66, 343-359. https://doi.org/10.1146/annurev-med-060513-093205 |
[45] | Romano, K.A., Vivas, E.I., Amador-Noguez, D. and Rey, F.E. (2015) Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide. MBio, 6, e02481. https://doi.org/10.1128/mBio.02481-14 |
[46] | Tang, W.H. and Hazen, S.L. (2014) The Contributory Role of Gut Microbiota in Cardiovascular Disease. Journal of Clinical Investigation, 124, 4204-4211. https://doi.org/10.1172/JCI72331 |
[47] | Haissman, J.M., Knudsen, A., Hoel, H., Kjaer, A., Kristoffersen, U.S., Berge, R.K., et al. (2016) Microbiota-Dependent Marker TMAO Is Elevated in Silent Ischemia But Is Not Associated with First-Time Myocardial Infarction in HIV Infection. JAIDS Journal of Acquired Immune Deficiency Syndromes, 71, 130-136.
https://doi.org/10.1097/QAI.0000000000000843 |
[48] | Knudsen, A., Christensen, T.E., Thorsteinsson, K., Ghotbi, A.A., Hasbak, P., Lebech, A.M., et al. (2016) Microbiota-Dependent Marker TMAO Is Not Associated With Decreased Myocardial Perfusion in Well-Treated HIV-Infected Patients as Assessed by 82Rubidium PET/CT. JAIDS Journal of Acquired Immune Deficiency Syndromes, 72, e83-e85.
https://doi.org/10.1097/QAI.0000000000001044 |
[49] | Miller, P.E., Haberlen, S.A., Brown, T.T., Margolick, J.B., DiDonato, J.A., Hazen, S.L., et al. (2016) Brief Report: Intestinal Microbiota-Produced Trimethylamine-N-Oxide and Its Association with Coronary Stenosis and HIV Serostatus. JAIDS Journal of Acquired Immune Deficiency Syndromes, 72, 114-118.
https://doi.org/10.1097/QAI.0000000000000937 |
[50] | Srinivasa, S., Fitch, K.V., Lo, J., Kadar, H., Knight, R., Wong, K., et al. (2015) Plaque Burden in HIV-Infected Patients Is Associated with Serum Intestinal Microbiota-Generated Trimethylamine. AIDS, 29, 443-452.
https://doi.org/10.1097/QAD.0000000000000565 |
[51] | Serrano-Villar, S., Rojo, D., Martinez-Martinez, M., Deusch, S., Vazquez-Castellanos, J.F., Sainz, T., et al. (2016) HIV Infection Results in Metabolic Alterations in the Gut Microbiota Different from Those Induced by Other Diseases. Scientific Reports, 6, 26192. https://doi.org/10.1038/srep26192 |