全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于压缩感知的心电图数据传输与显示系统的设计
Design of ECG Data Transmission and Display System Based on Compressed Sensing

DOI: 10.12677/SEA.2021.106074, PP. 693-707

Keywords: 压缩感知,树莓派,心电信号,可穿戴健康监测设备
Compressed Sensing
, Raspberry Pie, ECG Signal, Wearable Health Detection Equipment

Full-Text   Cite this paper   Add to My Lib

Abstract:

心血管疾病是人类面临最大的死亡威胁之一,日益增高的患病率成为社会医疗系统日益沉重的负担。对心电信号的长期记录保存了信号的形态,可以有效地诊断心脏病,但长期的实时监测产生的心电数据量非常大,需要压缩以减少存储空间和传输时间。本文介绍一种基于压缩感知的心电图数据传输与显示系统的设计与实施方法。压缩感知将压缩恢复数据过程的重点从编码端转到解码端,不仅可满足数据高效压缩的需求,并可降低传感设备功耗,具有良好的实用价值。本系统的采集传输模块由BMD101集成传感模块和树莓派组成,经比较后,采用离散小波变换(DWT)进行稀疏变换,高斯矩阵为测量矩阵,并使用稀疏度自适应匹配追踪算法(SAMP)进行重构,最后由Python语言构成的观测平台进行展示。
Cardiovascular disease is one of the greatest death threats of mankind facing. The increasing prevalence rate has become an increasingly heavy burden on the social medical system. The long-term recording of the ECG signal saves the shape of the signal and can effectively diagnose heart disease. However, the amount of ECG data generated by long-term real-time monitoring is very large and needs to be compressed to reduce storage space and transmission time. This paper introduces the design and implementation of ECG data transmission and display system based on compressed sensing. Compressed sensing shifts the focus of data compression and recovery process from coding end to decoding end, which not only meets the needs of efficient data compression, but also reduces the power consumption of sensing equipment, and has good practical value. The acquisition and transmission module of the system is composed of the BMD101 integrated sensing module and raspberry pie. After comparison, discrete wavelet transform (DWT) is used for sparse transformation, Gaussian matrix is the measurement matrix, and sparse adaptive matching tracking algorithm (samp) is used for reconstruction. Finally, the observation platform composed of Python language is displayed.

References

[1]  Tsaig, Y. and Donoho, D.L. (2006) Extensions of Compressed Sensing. Signal Processing, 86, 549-571.
https://doi.org/10.1016/j.sigpro.2005.05.029
[2]  Candes, E.J., Romberg, J.K. and Tao, T. (2006) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223.
https://doi.org/10.1002/cpa.20124
[3]  Mamaghanian, H., Khaled, N., Atienza, D. and Vandergheynst, P. (2011) Compressed Sensing for Real-Time Energy-Efficient ECG Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Transactions on Biomedical Engineering, 58, 2456-2466.
https://doi.org/10.1109/TBME.2011.2156795
[4]  王旭, 钱伟, 余宇帆. 心电信号预处理方法研究[J]. 中国医学工程, 2018, 26(12): 45-49.
[5]  王茁, 党姜婷, 李育亮, 杨海鱼, 杨文. 图像压缩感知理论研究综述[J]. 机械制造与自动化, 2019, 48(1): 112-116.
[6]  罗湾. 基于压缩感知的太阳图像处理[D]: [硕士学位论文]. 电子科技大学, 2020.
[7]  Tropp, J.A. and Gilbert, A.C. (2007) Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53, 4655-4666.
https://doi.org/10.1109/TIT.2007.909108
[8]  霍承富. 超光谱遥感图像压缩技术研究[D]: [博士学位论文]. 中国科学技术大学, 2012.
[9]  Do, T.T., Gan, L., Nguyen, N. and Tran, T.D. (2008) Sparsity Adaptive Matching Pursuit Algorithm for Practical Compressed Sensing. Asilomar Conference on Signals, Systems, and Computers, 10, 581-587.
https://doi.org/10.1109/ACSSC.2008.5074472

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133