|
顾北煤矿岩溶地下水动态特征及影响因素分析
|
Abstract:
研究深埋开采条件下岩溶地下水动态变化特征,对于分析含水层之间的水力联系及岩溶水害的防治具有十分重要意义。以淮南顾北煤矿为例,通过现场放水试验、采样测试与统计分析等方法,结合进一步水文地质探查和注浆治理工程,分析了南一1煤采区底板C3I组灰岩含水层的水位、水质和水温等动态变化特征及影响因素。结果表明:区内C3I组灰岩含水层浅部露头区岩溶裂隙相对发育,其富水性和渗透性相对较好,向深部富水性逐渐变弱、连通性逐渐变差特点。通过对岩溶含水层探查、注浆治理阻断了深部C3III和奥灰含水层与浅部含水层(C3I、C3II组)之间垂向水力联系,并得到了验证,从而为该矿深部岩溶水害防治提供依据。
The study of the dynamic characteristics of karst groundwater under the condition of deep mining is very important for analyzing the hydraulic relationship between different aquifers and the prevention and control of water inrush from aquifers under coal seam. Taking Gubei Coal Mine in Huainan as research object, through the methods such as dewatering test of aquifers, sampling and testing and statistical analysis, combined with the local advanced hydrogeological exploration and grouting project, the dynamic variation of characteristics (water level, water quality and water temperature) of group C3I aquifer under the coal floor in the first southern coal mining area and its factors are analyzed. The results show that karst fractures are relatively developed in the shallow outcrop of C3I limestone aquifer which is some abundance and permeability, while with increase of depth, its abundance, permeability and connection gradually become weak and the connectivity gradually becomes worse. Through further exploration to karst aquifers and grouting treatment, the vertical hydraulic connections between the shallow aquifer (aquifer of C3I and C3II) and the deep one (aquifer of C3III and Ordovician) have been blocked up and verified, which has provided a scientific basis for the prevention and control of karst water hazards in Gubei Coal Mine.
[1] | 靳德武. 我国煤层底板突水问题的研究现状及展望[J]. 煤炭科学技术, 2006(6): 3-6. |
[2] | Jiang, C.F., Gao, X.B., Hou, B.J., Zhang, S.T., Zhang, J.Y., Li, C.C. and Wang, W.Z. (2020) Occurrence and Environmental Impact of Coal Mine Goaf Water in Karst Areas in China. Journal of Cleaner Production, 275, Article ID: 123813. https://doi.org/10.1016/j.jclepro.2020.123813 |
[3] | 高宇航, 许光泉, 党保全, 等. 隐伏岩溶地下水动态特征及水文地质模式分析[J]. 煤矿安全, 2021, 52(3): 204-210. |
[4] | 陈崇希. 岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995(4): 361-366. |
[5] | 马振民, 刘立才, 陈鸿汉, 等. 山东泰安岩溶水系统地下水化学环境演化(1) [J]. 现代地质, 2002(4): 423-428. |
[6] | 蒋飞军, 卿国屏, 蒋魁, 等. 桥头河煤矿区深部岩溶突水机理及水害防治分析[J]. 资源信息与工程, 2021, 36(3): 76-79, 86. |
[7] | 李定龙. 应当建立煤矿区水资源保护区[J]. 中国煤炭, 1997(7): 20-21, 58. |
[8] | 丛利, 江彬华, 李英明. 基于井下群孔放水试验的首采工作面涌水量预测[J]. 煤炭技术, 2017, 36(11): 162-163. |
[9] | 王占银, 胥海东, 王彦召, 等. 基于放水试验的含水层参数计算及含水层间关系分析[J]. 煤矿安全, 2020, 51(11): 227-231. |
[10] | 田广, 王晓波. 东滩煤矿奥灰放水试验数值模拟[J]. 煤田地质与勘探, 2014, 42(3): 61-64. |
[11] | 赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报, 2014, 39(6): 1112-1117. |
[12] | 吴玉华, 赵开全, 孙本魁. 底板灰岩承压水上开采安全技术实践及认识[J]. 煤矿开采, 2009, 14(4): 40-42, 87. |
[13] | 许光泉, 桂和荣, 张连福, 等. 矿井大型放水试验及其意义[J]. 地下水, 2002(4): 200-201, 237. |
[14] | 叶志清. 放水试验阶段地下水动态变化及影响因素分析[J]. 地下水, 2014, 36(5): 259-261. |
[15] | 赵宝峰, 吕玉广. 基于底板砂岩含水层放水试验的多含水层水力联系研究[J]. 煤矿安全, 2020, 51(12): 34-39. |
[16] | Liu, Z.B., Zhao, R.J., Dong, S.N., Wang, W.K., Sun, H.F. and Mao, D.Q. (2020) Scanning for Water Hazard Threats with Sequential Water Releasing Tests in Underground Coal Mines. Journal of Hydrology, 590, Article ID: 125350.
https://doi.org/10.1016/j.jhydrol.2020.125350 |
[17] | 余世滔. 顾北矿岩溶水文地质特征及疏放性评价[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2019. |
[18] | 郑竹艳, 许光泉, 杨婷婷, 等. 淮南顾北矿F_(104)断层两侧岩溶水化学形成机制及导隔水性评价(1) [J]. 煤田地质与勘探, 2020, 48(1): 129-137. |
[19] | 杨婷婷, 许光泉, 余世滔, 等. 煤层下部太原组岩溶水化学组分特征及其成因分析(1) [J]. 水文地质工程地质, 2019, 46(2): 100-108. |
[20] | 郑士田. 两淮煤田煤层底板灰岩水害区域超前探查治理技术[J]. 煤田地质与勘探, 2018, 46(4): 142-146, 153. |
[21] | 赵庆彪. 华北型煤田深部开采底板突水机理与区域治理关键技术[J]. 华北科技学院学报, 2015, 12(4): 1-7. |
[22] | 赵鹏飞, 赵章. 地面水平分支孔注浆超前治理奥灰底板突水技术[J]. 煤炭科学技术, 2015, 43(6): 122-125. |
[23] | 李金龙, 张允强, 徐新启, 等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探, 2019, 47(S1): 20-25. |