All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Temperature Dependent Resistivity of Chiral Single-Walled Carbon Nanotubes in the Presence of Coherent Light Source

DOI: 10.4236/wjcmp.2021.114006, PP. 77-86

Keywords: Chiral Single-Wall Carbon Nanotubes, Boltzmann Transport Equation, Axial Resistivity, Chiral Angle

Full-Text   Cite this paper   Add to My Lib


We have studied the axial resistivity of chiral single-walled carbon nanotubes (SWCNTs) in the presence of a combined direct current and high frequency alternating fields. We employed semiclassical Boltzmann equations approach and compared our results with a similar study that examined the circumferential resistivity of these unique materials. Our work shows that these materials display similar resistivity for both axial and circumferential directions and this largely depends on temperature, intensities of the applied fields and material parameters such as chiral angle. Based on these low-temperature bidirectional conductivity responses, we propose chiral SWCNTs for design of efficient optoelectronic devices.


[1]  Iijima, S., Ajayan, P.M. and Ichihashi, T. (1992) Growth Model for Carbon Nanotubes. Physical Review Letters, 69, 3100.
[2]  Zhou, W.Y., Bai, X.D., Wang, E.E. and Xie, S.S. (2009) Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes. Advanced Materials, 21, 4565-4583.
[3]  Dekker, C. (1999) Carbon Nanotubes as Molecular Quantum Wires. Physics Today, 52, 22-30.
[4]  Ionel, S., Lepadatu, A.-M., Teodorescu, V.S., Ciurea, M.L., Iancu, V., Dragoman, M., Konstantinidis, G. and Buiculescu, R. (2011) Electrical Behavior of Multi-Walled Carbon Nanotube Network Embedded in Amorphous Silicon Nitride. Nanoscale Research Letters, 6, Article Number: 88.
[5]  Purewal, M.S., Hong, B.H., Ravi, A., Chandra, B., Hone, J. and Kim, P. (2007) Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes. Physical Review Letters, 98, 186808.
[6]  Kane, C.L., Mele, E.J., Lee, R.S., Fischer, J.E., Petit, P., Dai, H., Thess, A., et al. (1998) Temperature-Dependent Resistivity of Single-Wall Carbon Nanotubes. EPL (Europhysics Letters), 41, 683.
[7]  Twum, A., Mensah, S.Y., Edziah, R. and Arthur, A. (2020) Laser Induced Resistivity of Chiral Single Wall Carbon Nanotubes. Journal of Physics Communications, 4, 075011.
[8]  Mensah, S.Y. and Kangah, G.K. (1992) The Thermoelectric Effect in a Semicon Ductor Superlattice in a Non-Quantized Electric Field. Journal of Physics: Condensed Matter, 4, 919.
[9]  Slepyan, G.Y., Maksimenko, S.A., Lakhtakia, A., Shenko, O.M.Y. and Gusakov, A.V. (1998) Electronic and Electromagnetic Properties of Nanotubes. Physical Review B, 57, 9485.
[10]  Yevtushenko, O.M., Slepyan, G.Y., Maksimenko, S.A., Lakhtakia, A. and Romanov, D.A. (1997) Nonlinear Electron Transport Effects in a Chiral Carbon Nanotube. Physical Review Letters, 79, 1102.
[11]  Mensah, S.Y., Allotey, F.K.A., Mensah, N.G. and Nkrumah, G. (2001) Differential Thermopower of a CNT Chiral Carbon Nanotube. Journal of Physics: Condensed Matter, 13, 5653.
[12]  Vavro, J., Kikkawa, J.M. and Fischer, J.E. (2005) Metal-Insulator Transition in Doped Single-Wall Carbon Nanotubes. Physical Review B, 71, 155410.
[13]  Yanagi, K., Udoguchi, H., Sagitani, S., Oshima, Y., Takenobu, T., Kataura, H., Ishida, T., Matsuda, K. and Maniwa, Y. (2010) Transport Mechanisms in Metallic and Semiconducting Single-Wall Carbon Nanotube Networks. Acs Nano, 4, 4027-4032.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413