The dynamics of periodic base pairs opening in a finite stacking enthalpy DNA is investigated in this work. This is achieved by using the Joyeux-Buyukdagli DNA model, in which the polynomial approximations of the stacking interaction and Morse potential are expanded up to the fifth order nonlinear terms by using the Taylor series expansion technique. By incorporating the continuum limit approximation and the extended multiple scale asymptotic methods, higher order nonlinear Schrödinger amplitude equations are derived. In the limit of cubic nonlinearity, the periodic base pair configurations clearly depict the open state; with linear stability analysis exposing other periodic background modes that are vital in the DNA transcription, replication, and transmission of genetic codes. The higher order modes generally display a more robust and structurally stable wave profile, which epitomizes the base pair dynamics of the DNA molecule observed from experimental investigations. Prolonged time evolution of base pairs stretching greatly modifies the higher order modes of the DNA molecule, strongly suggesting that such modes may induce abnormalities like gene mutation which is responsible for numerous diseases.
References
[1]
Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A. and Litwin, S. (1980) Proceedings of the National Academy of Sciences of the United States of America, 77, 7222. https://doi.org/10.1073/pnas.77.12.7222
[2]
Joyeux, M. and Buyukdagli, S. (2005) Physical Review E, 72, Article ID: 051902. https://doi.org/10.1103/PhysRevE.72.051902
[3]
Joyeux, M. and Buyukdagli, S. (2008) Physical Review E, 77, Article ID: 031903. https://doi.org/10.1103/PhysRevE.77.031903
[4]
Joyeux, M. and Florescu, A.-M. (2009) Journal of Physics: Condensed Matter, 21, Article ID: 34101. https://doi.org/10.1088/0953-8984/21/3/034101
[5]
Yakusevich, L. (2004) Nonlinear Physics of DNA. Wiley Series in Nonlinear Sciences. John Wiley and Sons, Weinheim.
[6]
Dauxois, T., Peyrard, M. and Bishop, A.R. (1993) Physical Review E, 47, 684-695. https://doi.org/10.1103/PhysRevE.47.684
[7]
Dauxois, T. and Peyrard, M. (1995) Physical Review E, 51, 4027-4040. https://doi.org/10.1103/PhysRevE.51.4027
[8]
Peyrard, M. (2004) Nonlinearity, 17, R1-R40. https://doi.org/10.1088/0951-7715/17/2/R01
[9]
El Kinani, R., Kaidi, H. and Barka, N. (2020) Open Journal of Biophysics, 10, 129-149. https://doi.org/10.4236/ojbiphy.2020.103011
[10]
Biegeleisen, K. (2016) Open Access Library Journal, 3, 1-24. https://doi.org/10.4236/oalib.1103114
[11]
Watson, J.D. (1976) Molecular Biology of the Gene. 3rd Edition, W. A. Benjamin, Menlo Park.
[12]
Gotoh, O. (1983) Advances in Biophysics, 16, 3. https://doi.org/10.1016/0065-227X(83)90007-2
[13]
Yakushevich, L.V., Savin, A.V. and Manevitch, L.I. (2002) Physical Review E, 66, Article ID: 016614. https://doi.org/10.1103/PhysRevE.66.016614
[14]
Okaly, J.B., Ndzana, F.-II, Woulaché, R.L. and Kofané, T.C. (2019) The European Physical Journal Plus, 134, 598. https://doi.org/10.1140/epjp/i2019-12992-3
[15]
Nfor, N.O., Yamgoué, S.B. and Moukam Kakmeni, F.M. (2021) Chinese Physics B. https://doi.org/10.1088/1674-1056/abbbf3
[16]
Fermi, E., Pasta, J. and Ulam, S. (1965) Los Alamos Report LA-1940 (1955), Published Later. In: Segr, E., Ed., Collected Papers of Enrico Fermi, University of Chicago Press, Chicago.
[17]
Nfor, N.O., Ghomsi, P.G. and Moukam Kakmeni, F.M. (2018) Physical Review E, 97, Article ID: 022214. https://doi.org/10.1103/PhysRevE.97.022214
[18]
Achu, G.F., Mkam, S.E., Moukam Kakmeni, F.M. and Tchawoua, C. (2018) Physical Review E, 98, Article ID: 022216. https://doi.org/10.1103/PhysRevE.98.022216
[19]
Nfor, N.O. and Mokoli, M.T. (2016) Journal of Modern Physics, 7, 1166-1180. https://doi.org/10.4236/jmp.2016.710106
[20]
Achu, G.F., Moukam Kakmeni, F.M. and Dikandé, A.M. (2018) Physical Review E, 97, Article ID: 012211. https://doi.org/10.1103/PhysRevE.97.012211
[21]
Moukam Kakmeni, F.M., Inack, E.M. and Yamakou, E.M. (2014) Physical Review E, 89, Article ID: 052919. https://doi.org/10.1103/PhysRevE.89.052919
Kivshar, Y.S. and Agrawal, G.P. (2003) Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego. https://doi.org/10.1016/B978-012410590-4/50012-7
[24]
Fandio Jubgang, D.J., Dikandé, A.M. and Sunda-Meya, A. (2015) Physical Review A, 92, Article ID: 053850. https://doi.org/10.1103/PhysRevA.92.053850
[25]
Okaly, J.B., Mvogo, A., Tabi, C.B., Ekobena Fouda, H.P. and Kofané, T.C. (2020) Physical Review E, 102, Article ID: 062402. https://doi.org/10.1103/PhysRevE.102.062402
[26]
Ying-Bo, Y., Xiao-Yun, W. and Bing, T. (2016) Journal of Biological Physics, 42, 213-222. https://doi.org/10.1007/s10867-015-9402-3
[27]
Bang, O. and Peyrard, M. (1996) Physical Review E, 53, 4143. https://doi.org/10.1103/PhysRevE.53.4143
[28]
Ting, J.L. and Peyrard, M. (1996) Physical Review E, 53, 1011.
[29]
Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A. and Litwin, S. (1980) Proceedings of the National Academy of Sciences of the United States of America, 77, 7222. https://doi.org/10.1073/pnas.77.12.7222
[30]
Yakushevich, L.V. (1989) Physics Letters A, 136, 413-417. https://doi.org/10.1016/0375-9601(89)90425-8
Gaeta, S. (2006) Physical Review E, 74, Article ID: 021921. https://doi.org/10.1103/PhysRevE.74.021921
[33]
Gaeta G. (2007) Journal of Nonlinear Mathematical Physics, 14, 57-81. https://doi.org/10.2991/jnmp.2007.14.1.6
[34]
Yomosa, S. (1983) Physical Review A, 27, 2120-2125. https://doi.org/10.1103/PhysRevA.27.2120
[35]
Yomosa, S. (1984) Physical Review A, 30, 474-480. https://doi.org/10.1103/PhysRevA.30.474
[36]
Homma, S. and Takeno, S. (1984) Progress of Theoretical Physics, 72, 679-693. https://doi.org/10.1143/PTP.72.679
[37]
Campa, A. and Giansanti, A. (1998) Physical Review E, 58, 3585. https://doi.org/10.1103/PhysRevE.58.3585
[38]
Gninzanlong, C.L., Ndjomatchoua, F.T. and Tchawoua, C. (2018) Chaos, 28, Article ID: 043105. https://doi.org/10.1063/1.5009147
[39]
Ndjoko, P.B., Bilbault, J.M., Binczak, S. and Kofané, T.C. (2012) Physical Review E, 85, Article ID: 011916. https://doi.org/10.1103/PhysRevE.85.011916
[40]
Vargas, E.V., Ludu, A., Hustert, R., Gumrich, P., Jackson, A.D. and Heimburg, T. (2011) Biophysical Chemistry, 153, 159. https://doi.org/10.1016/j.bpc.2010.11.001
[41]
Nde Aboringong, E.N. and Dikandé, A.M. (2018) The European Physical Journal E, 41, 35. https://doi.org/10.1140/epje/i2018-11640-9
[42]
Daniel, M. and Vasumathi, V. (2008) Physics Letters A, 372, 5144. https://doi.org/10.1016/j.physleta.2008.05.063
Chevizovich, D., Michieletto, D., Mvogo, A., Zakiryanov, F. and Zdravković, S. (2020) Royal Society Open Science, 7, Article ID: 200774. https://doi.org/10.1098/rsos.200774