全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Staggered Fermion for the Gross-Neveu Model at Non-Zero Temperature and Density

DOI: 10.4236/jmp.2021.1213105, PP. 1795-1821

Keywords: Gross-Neveu Model, Phase Diagram, Staggered Fermion, Gap Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The 2 + 1d Gross-Neveu model with finite density and finite temperature is studied by the staggered fermion discretization. The kinetic part of this staggered fermion in momentum space is used to build the relation between the staggered fermion and Wilson-like fermion. In the large Nf?limit (the number Nf?of staggered fermion flavors), the chiral condensate and fermion density are solved from the gap equation in momentum space, and thus the phase diagram of fermion coupling, temperature and chemical potential is obtained. Moreover, an analytic formula for the inverse of the staggered fermion matrix is given explicitly, which can be calculated easily by parallelization. The generalization to the 1 + 1d and 3 + 1d cases is also considered.

References

[1]  de Forcrand, P. (2009) PoS, LAT2009, 10.
https://doi.org/10.22323/1.091.0010
[2]  Fukushima, K. and Hatsuda, T. (2011) Reports on Progress in Physics, 74, Article ID: 014001.
https://doi.org/10.1088/0034-4885/74/1/014001
[3]  Bazavov, A., et al. (2012) Physical Review D, 85, Article ID: 054503.
https://doi.org/10.1103/PhysRevD.85.054503
[4]  Bhattacharya, T., et al. (2014) Physical Review Letters, 113, Article ID: 082001.
https://doi.org/10.1103/PhysRevLett.113.082001
[5]  Schmidt, C. and Sharma, S. (2017) Journal of Physics G: Nuclear and Particle Physics, 44, Article ID: 104002.
https://doi.org/10.1088/1361-6471/aa824a
[6]  Bazavov, A., et al. (2019) Physics Letters B, 795, 15.
https://doi.org/10.1016/j.physletb.2019.05.013
[7]  Fischer, C.S. (2019) Progress in Particle and Nuclear Physics, 105, 1.
https://doi.org/10.1016/j.ppnp.2019.01.002
[8]  Fu, W.J., Pawlowski, J.M. and Rennecke, F. (2020) Physical Review D, 101, Article ID: 054032.
https://doi.org/10.1103/PhysRevD.101.054032
[9]  Guenther, J.N. (2021) The European Physical Journal A, 57, 136.
https://doi.org/10.1140/epja/s10050-021-00354-6
[10]  Cotter, S., Giudice, P., Hands, S. and Skullerud, J.-I. (2013) Physical Review D, 87, Article ID: 034507.
https://doi.org/10.1103/PhysRevD.87.034507
[11]  Li, D.M. (2016) Physical Review D, 94, Article ID: 114501.
https://doi.org/10.1103/PhysRevD.94.114501
[12]  Banuls, M.C. and Cichy, K. (2020) Reports on Progress in Physics, 83, Article ID: 024401.
https://doi.org/10.1088/1361-6633/ab6311
[13]  Hauschild, J. and Pollmann, F. (2018) SciPost Physics Lecture Notes, 5, 1.
[14]  Verstraete, F. and Ignacio Cirac, J. (2010) Physical Review Letters, 104, Article ID: 190405.
https://doi.org/10.1103/PhysRevLett.104.190405
[15]  Haegeman, J., Ignacio Cirac, J., Osborne, T.J. and Verstraete, F. (2013) Physical Review B, 88, Article ID: 085118.
https://doi.org/10.1103/PhysRevB.88.085118
[16]  Rosenstein, B., Warr, B.J. and Park, S.H. (1991) Physics Reports, 205, 59.
https://doi.org/10.1016/0370-1573(91)90129-A
[17]  Rosenstein, B., Warr, B.J. and Park, S.H. (1989) Physical Review D, 39, 3088.
https://doi.org/10.1103/PhysRevD.39.3088
[18]  Hands, S., Kocic, A. and Kogut, J.B. (1993) Nuclear Physics B, 390, 355.
https://doi.org/10.1016/0550-3213(93)90460-7
[19]  Hands, S., Kocić, A. and Kogut, J.B. (1993) Annals of Physics, 224, 29.
https://doi.org/10.1006/aphy.1993.1039
[20]  Kogut, J.B. and Strouthos, C.G. (2001) Physical Review D, 63, Article ID: 054502.
https://doi.org/10.1103/PhysRevD.63.054502
[21]  Wolff, U. (1985) Physics Letters B, 157, 303.
https://doi.org/10.1016/0370-2693(85)90671-9
[22]  Thies, M. and Urlichs, K. (2003) Physical Review D, 67, Article ID: 125015.
https://doi.org/10.1103/PhysRevD.67.125015
[23]  Schnetz, O., Thies, M. and Urlichs, K. (2004) Annals of Physics (Amsterdam), 314, 425.
https://doi.org/10.1016/j.aop.2004.06.009
[24]  Thies, M. (2006) Journal of Physics A, 39, 12707.
https://doi.org/10.1088/0305-4470/39/41/S04
[25]  de Forcrand, P. and Wenger, U. (2006) PoS, LAT2009, 152.
[26]  Wagner, M. (2007) Physical Review D, 76, Article ID: 076002.
https://doi.org/10.1103/PhysRevD.76.076002
[27]  Lenz, J., Pannullo, L., Wagner, M., Wellegehausen, B. and Wipf, A. (2020) Physical Review D, 101, Article ID: 094512. https://doi.org/10.1103/PhysRevD.101.094512
[28]  Lenz, J.J., Pannullo, L., Wagner, M., Wellegehausen, B. and Wipf, A. (2020) Physical Review D, 102, Article ID: 114501.
https://doi.org/10.1103/PhysRevD.102.114501
[29]  Castorina, P., Mazza, M. and Zappala, D. (2003) Physics Letters B, 567, 31-38.
https://doi.org/10.1016/j.physletb.2003.06.005
[30]  Buballa, M., Kurth, L., Wagner, M. and Winstel, M. (2021) Physical Review D, 103, Article ID: 034503.
https://doi.org/10.1103/PhysRevD.103.034503
[31]  Hands, S. (2016) JHEP, 11, 15.
https://doi.org/10.1007/JHEP11(2016)015
[32]  Rothe, H.J. (2005) Lattice Gauge Theory, an Introduction. World Scientific Lecture Notes in Physics Vol. 74, World Scientific Publishing, Singapore.
https://doi.org/10.1142/5674
[33]  Cohen, Y., Elittzur, S. and Rabinovici, E. (1983) Nuclear Physics B, 220, 102.
https://doi.org/10.1016/0550-3213(83)90136-0
[34]  Burden, C.J. and Burkitt, A.N. (1987) Europhysics Letters, 3, 545.
https://doi.org/10.1209/0295-5075/3/5/006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133