全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diabetic Nephropathy and Diabetic Kidney Disease

DOI: 10.4236/jdm.2021.115029, PP. 359-377

Keywords: Diabetic Kidney Disease, Diabetic Nephropathy, Chronic Kidney Disease, Proteinuria, Renin Angiotensin System

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage kidney disease (ESKD) in the United States and worldwide. Alterations in glomerular hemodynamics, inflammation, and fibrosis are primary mediators of kidney tissue damage, although the relative contribution of these mechanisms likely varies between individuals and over the course of the natural history of diabetic kidney disease. The presence of DKD is also strongly associated with cardiovascular morbidity/mortality and has a major influence on survival. Clinical presentation and prognosis of DKD are heterogeneous and vary between individuals, although the severity of albuminuria, particularly when combined with elevated blood pressure, remains an important marker of those at higher risk of progression. Management of DKD requires a holistic approach that combines cardiovascular risk reduction with elements to slow the progression of kidney disease, namely glycemic control, RAAS inhibition and blood pressure lowering. Effective delivery of these interventions in combination reduces the risks of DKD progression, as well as other microvascular complications, cardiovascular events, and mortality. Several international groups have issued clinical guidelines that largely agree on recommended targets, and in clinical practice these should be tailored for each individual patient. SGLT2 inhibitors are exciting new options now available to slow the progression of diabetic nephropathy.

References

[1]  Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S. and de Boer, I.H. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610.
https://doi.org/10.1001/jama.2016.10924
[2]  Bakris, G.L. (2019) Major Advancements in Slowing Diabetic Kidney Disease Progression: Focus on SGLT2 Inhibitors. American Journal of Kidney Diseases, 74, 573-575.
https://doi.org/10.1053/j.ajkd.2019.05.009
[3]  Choi, A.I., Weekley, C.C., Chen, S.C., Li, S., Kurella Tamura, M., Norris, K.C. and Shlipak, M.G. (2011) Association of Educational Attainment with Chronic Disease and Mortality: The Kidney Early Evaluation Program (KEEP). American Journal of Kidney Diseases, 58, 228-234.
https://doi.org/10.1053/j.ajkd.2011.02.388
[4]  Kruzel-Davila, E., Wasser, W.G., Aviram, S. and Skorecki, K. (2016) APOL1 Nephropathy: From Gene to Mechanisms of Kidney Injury. Nephrology Dialysis Transplantation, 31, 349-358.
https://doi.org/10.1093/ndt/gfu391
[5]  Nelson, R.G., Bennett, P.H., Beck, G.J., Tan, M., Knowler, W.C., Mitch, W.E., Hirschman, G.H. and Myers, B.D. (1996) Development and Progression of Renal Disease in Pima Indians with Non-Insulin-Dependent Diabetes Mellitus. The New England Journal of Medicine, 335, 1636-1642.
https://doi.org/10.1056/NEJM199611283352203
[6]  Bierhaus, A., Humpert, P.M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D.M. and Nawroth, P.P. (2005) Understanding RAGE, the Receptor for Advanced Glycation End Products. Journal of Molecular Medicine, 83, 876-886.
https://doi.org/10.1007/s00109-005-0688-7
[7]  Tonneijck, L., Muskiet, M.H., Smits, M.M., van Bommel, E.J., Heerspink, H.J., van Raalte, D.H. and Joles, J.A. (2017) Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. Journal of the American Society of Nephrology, 28, 1023-1039.
https://doi.org/10.1681/ASN.2016060666
[8]  Helal, I., Fick-Brosnahan, G.M., Reed-Gitomer, B. and Schrier, R.W. (2012) Glomerular Hyperfiltration: Definitions, Mechanisms and Clinical Implications. Nature Reviews Nephrology, 8, 293-300.
https://doi.org/10.1038/nrneph.2012.19
[9]  Toth-Manikowski, S. and Atta, M.G. (2015) Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. Journal of Diabetes Research, 2015, Article ID: 697010.
https://doi.org/10.1155/2015/697010
[10]  Fioretto, P., Steffes, M.W., Sutherland, D.E. and Mauer, M. (1995) Sequential Renal Biopsies in Insulin-Dependent Diabetic Patients: Structural Factors Associated with Clinical Progression. Kidney International, 48, 1929-1935.
https://doi.org/10.1038/ki.1995.493
[11]  Kussman, M.J., Goldstein, H. and Gleason, R.E. (1976) The Clinical Course of Diabetic Nephropathy. JAMA, 236, 1861-1863.
https://doi.org/10.1001/jama.1976.03270170027020
[12]  Hovind, P., Tarnow, L., Rossing, P., Jensen, B.R., Graae, M., Torp, I., Binder, C. and Parving, H.H. (2004) Predictors for the Development of Microalbuminuria and Macroalbuminuria in Patients with Type 1 Diabetes: Inception Cohort Study. BMJ, 328, Article No. 1105.
https://doi.org/10.1136/bmj.38070.450891.FE
[13]  Inker, L.A., Astor, B.C., Fox, C.H., Isakova, T., Lash, J.P. Peralta, C.A., Kurella Tamura, M. and Feldman, H.I. (2014) KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD. American Journal of Kidney Diseases, 63, 713-735.
https://doi.org/10.1053/j.ajkd.2014.01.416
[14]  Packham, D.K., Alves, T.P., Dwyer, J.P., Atkins, R., de Zeeuw, D., Cooper, M., Shahinfar, S., Lewis, J.B. and Lambers Heerspink, H.J. (2012) Relative Incidence of ESRD versus Cardiovascular Mortality in Proteinuric Type 2 Diabetes and Nephropathy: Results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) Database. American Journal of Kidney Diseases, 59, 75-83.
https://doi.org/10.1053/j.ajkd.2011.09.017
[15]  Eijkelkamp, W.B., Zhang, Z., Remuzzi, G., Parving, H.H., Cooper, M.E., Keane, W.F., Shahinfar, S., Gleim, G.W., Weir, M.R., Brenner, B.M., et al. (2007) Albuminuria Is a Target for Renoprotective Therapy Independent from Blood Pressure in Patients with Type 2 Diabetic Nephropathy: Post Hoc Analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Journal of the American Society of Nephrology, 18, 1540-1546.
https://doi.org/10.1681/ASN.2006050445
[16]  Dwyer, J.P. and Lewis, J.B. (2013) Nonproteinuric Diabetic Nephropathy: When Diabetics Don’t Read the Textbook. Medical Clinics of North America, 97, 53-58.
https://doi.org/10.1016/j.mcna.2012.10.006
[17]  National Kidney Foundation (2012) KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. American Journal of Kidney Diseases, 60, 850-886.
https://doi.org/10.1053/j.ajkd.2012.07.005
[18]  Orchard, T.J., Dorman, J.S., Maser, R.E., Becker, D.J., Drash, A.L., Ellis, D., LaPorte, R.E. and Kuller, L.H. (1990) Prevalence of Complications in IDDM by Sex and Duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes, 39, 1116-1124.
https://doi.org/10.2337/diab.39.9.1116
[19]  Schwartz, M.M., Lewis, E.J., Leonard-Martin, T., Lewis, J.B. and Batlle, D. (1998) Renal Pathology Patterns in Type II Diabetes Mellitus: Relationship with Retinopathy. Nephrology Dialysis Transplantation, 13, 2547-2552.
https://doi.org/10.1093/ndt/13.10.2547
[20]  Fioretto, P., Mauer, M., Brocco, E., Velussi, M., Frigato, F., Muollo, B., Sambataro, M., Abaterusso, C., Baggio, B., Crepaldi, G., et al. (1996) Patterns of Renal Injury in NIDDM Patients with Microalbuminuria. Diabetologia, 39, 1569-1576.
https://doi.org/10.1007/s001250050616
[21]  Selby, N.M. and Taal, M.W. (2019) Long-Term Outcomes after AKI—A Major Unmet Clinical Need. Kidney International, 95, 21-23.
https://doi.org/10.1016/j.kint.2018.09.005
[22]  Yu, S.M. and Bonventre, J.V. (2018) Acute Kidney Injury and Progression of Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 25, 166-180.
https://doi.org/10.1053/j.ackd.2017.12.005
[23]  Jiang, S., Wang, Y., Zhang, Z., Dai, P., Yang, Y. and Li, W. (2018) Accuracy of Hematuria for Predicting Non-Diabetic Renal Disease in Patients with Diabetes and Kidney Disease: A Systematic Review and Meta-Analysis. Diabetes Research and Clinical Practice, 143, 288-300.
https://doi.org/10.1016/j.diabres.2018.07.027
[24]  Leung, N., Bridoux, F., Batuman, V., Chaidos, A., Cockwell, P., D’Agati, V.D., Dispenzieri, A., Fervenza, F.C., Fermand, J.P., Gibbs, S., et al. (2019) The Evaluation of Monoclonal Gammopathy of Renal Significance: A Consensus Report of the International Kidney and Monoclonal Gammopathy Research Group. Nature Reviews Nephrology, 15, 45-59.
https://doi.org/10.1038/s41581-018-0077-4
[25]  The Diabetes Control and Complications Trial Research Group (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. The New England Journal of Medicine, 329, 977-986.
https://doi.org/10.1056/NEJM199309303291401
[26]  The DCCT/EDIC Research Group (2011) Intensive Diabetes Therapy and Glomerular Filtration Rate in Type 1 Diabetes. The New England Journal of Medicine, 365, 2366-2376.
https://doi.org/10.1056/NEJMoa1111732
[27]  UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). Lancet, 352, 837-853.
https://doi.org/10.1016/S0140-6736(98)07019-6
[28]  The ADVANCE Collaborative Group (2008) Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. The New England Journal of Medicine, 358, 2560-2572.
https://doi.org/10.1056/NEJMoa0802987
[29]  The Action to Control Cardiovascular Risk in Diabetes Study Group (2008) Effects of Intensive Glucose Lowering in Type 2 Diabetes. The New England Journal of Medicine, 358, 2545-2559.
https://doi.org/10.1056/NEJMoa0802743
[30]  Duckworth, W., Abraira, C., Moritz, T., Reda, D., Emanuele, N., Reaven, P.D., Zieve, F.J., Marks, J., Davis, S.N., Hayward, R., et al. (2009) Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. The New England Journal of Medicine, 360, 129-139.
https://doi.org/10.1056/NEJMoa0808431
[31]  de Galan, B.E., Perkovic, V., Ninomiya, T., Pillai, A., Patel, A., Cass, A., Neal, B, Poulter, N., Harrap, S., Mogensen, C.E., et al. (2009) Lowering Blood Pressure Reduces Renal Events in Type 2 Diabetes. Journal of the American Society of Nephrology, 20, 883-892.
https://doi.org/10.1681/ASN.2008070667
[32]  UK Prospective Diabetes Study Group (1998) Tight Blood Pressure Control and Risk of Macrovascular and Microvascular Complications in Type 2 diabetes: UKPDS 38. BMJ, 317, 703-713.
https://doi.org/10.1136/bmj.317.7160.703
[33]  Schrier, R.W., Estacio, R., Mehler, P.S. and Hiatt, W.R. (2007) Appropriate Blood Pressure Control in Hypertensive and Normotensive Type 2 Diabetes Mellitus: A Summary of the ABCD Trial. Nature Clinical Practice Nephrology, 3, 428-438.
https://doi.org/10.1038/ncpneph0559
[34]  The ACCORD Study Group (2010) Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. The New England Journal of Medicine, 362, 1575-1585.
https://doi.org/10.1056/NEJMoa1001286
[35]  Schrier, R.W., Estacio, R.O., Esler, A. and Mehler, P. (2002) Effects of Aggressive Blood Pressure Control in Normotensive Type 2 Diabetic Patients on Albuminuria, Retinopathy and Strokes. Kidney International, 61, 1086-1097.
https://doi.org/10.1046/j.1523-1755.2002.00213.x
[36]  Arnett, D.K., Blumenthal, R.S., Albert, M.A., Buroker, A.B., Goldberger, Z.D., Hahn, E.J., Himmelfarb, C.D., Khera, A., Lloyd-Jones, D., McEvoy, J.W., et al. (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140, e596-e646.
https://doi.org/10.1161/CIR.0000000000000678
[37]  Ritz, E., Menne, J. and Haller, H. (2012) Prevalence of Microalbuminuria in Type 2 Diabetes: Lessons Learned from the ROADMAP Study. Nephrology Dialysis Transplantation, 27, iv28-iv30.
https://doi.org/10.1093/ndt/gfs424
[38]  Parving, H.H., Lehnert, H., Brochner-Mortensen, J., Gomis, R., Andersen, S. and Arner, P. (2001) The Effect of Irbesartan on the Development of Diabetic Nephropathy in Patients with Type 2 Diabetes. The New England Journal of Medicine, 345, 870-878.
https://doi.org/10.1056/NEJMoa011489
[39]  Lewis, E.J., Hunsicker, L.G., Bain, R.P. and Rohde, R.D. (1993) The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. The New England Journal of Medicine, 329, 1456-1462.
https://doi.org/10.1056/NEJM199311113292004
[40]  Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H.H., Remuzzi, G., Snapinn, S.M., Zhang, Z., Shahinfar, S., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. The New England Journal of Medicine, 345, 861-869.
https://doi.org/10.1056/NEJMoa011161
[41]  Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., Ritz, E., Atkins, R.C., Rohde, R., Raz, I., et al. (2001) Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients With Nephropathy Due to Type 2 Diabetes. The New England Journal of Medicine, 345, 851-860.
https://doi.org/10.1056/NEJMoa011303
[42]  Mann, J.F., Schmieder, R.E., McQueen, M., Dyal, L., Schumacher, H., Pogue, J., Wang, X., Maggioni, A., Budaj, A., Chaithiraphan, S. et al. (2008) Renal Outcomes with Telmisartan, Ramipril, or Both, in People at High Vascular Risk (the ONTARGET Study): A Multicentre, Randomised, Double-Blind, Controlled Trial. Lancet, 372, 547-553.
https://doi.org/10.1016/S0140-6736(08)61236-2
[43]  Fried, L.F., Emanuele, N., Zhang, J.H., Brophy, M., Conner, T.A., Duckworth, W., Leehey, D.J., McCullough, P.A., O’Connor, T., Palevsky, P.M., et al. (2013) Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy. The New England Journal of Medicine, 369, 1892-1903.
https://doi.org/10.1056/NEJMoa1303154
[44]  Jhund, P.S., McMurray, J.J., Chaturvedi, N., Brunel, P., Desai, A.S., Finn, P.V., Haffner, S.M., Solomon, S.D., Weinrauch, L.A., Claggett, B.L., et al. (2015) Mortality Following a Cardiovascular or Renal Event in Patients with Type 2 Diabetes in the Altitude Trial. European Heart Journal, 36, 2463-2469.
https://doi.org/10.1093/eurheartj/ehv295
[45]  Heerspink, H.J., Perkins, B.A., Fitchett, D.H., Husain, M. and Cherney, D.Z. (2016) Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation, 134, 752-772.
https://doi.org/10.1161/CIRCULATIONAHA.116.021887
[46]  Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 373, 2117-2128.
https://doi.org/10.1056/NEJMoa1504720
[47]  Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., Shaw, W., Law, G., Desai, M., Matthews, D.R., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. The New England Journal of Medicine, 377, 644-657.
https://doi.org/10.1056/NEJMoa1611925
[48]  Heerspink, H.J.L., Stefansson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F.F., Mann, J.F.E., McMurray, J.J.V., Lindberg, M., Rossing, P., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. The New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/NEJMoa2024816
[49]  Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., Edwards, R., Agarwal, R., Bakris, G., Bull, S., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. The New England Journal of medicine, 380, 2295-2306.
https://doi.org/10.1056/NEJMoa1811744

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133