全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolution of Glycemic Targets in Management of Diabetes

DOI: 10.4236/jdm.2021.115018, PP. 208-220

Keywords: Glycemic Targets, HbA1c, Chronic Complications, DCCT

Full-Text   Cite this paper   Add to My Lib

Abstract:

How goals of diabetes management evolved over the last hundred years was largely dependent on the understanding of association of hyperglycemia with chronic complications, development of safe and effective therapeutic options and monitoring capabilities. Insulin ended the era of death in type 1 diabetes (T1D) but an era of chronic complications emerged. The medical community and policy makers were not convinced that near normal glycemia would prevent these complications. Diabetes Control and Complication Trial (DCCT) has a huge impact on how diabetes is managed today, hemoglobin A1C (A1C) of less than 7% emerged as a main therapeutic objective. However DCCT and later United Kingdom Prospective Diabetes Study (UKPDS) in type 2 diabetes (T2D), failed to show a safe lower cutoff where microvascular complications could be maximally reduced without additional risk of hypoglycemia. Moreover macrovascular complications could not be adequately addressed in these study populations. An over enthusiastic approach in the Action to Control Cardiovascular Risk in Type 2 Diabetes (ACCORD) trial resulted in an increase in overall and cardiovascular mortality, this led to concept of individualization of glycemic targets and “lower the better” is not appropriate for everyone. At the same time the follow up epidemiological data of DCCT and UKPDS reveal that good glycemic control earlier has long term benefits, the concept of legacy effect and led to the idea of “earlier the better”. Later advances in therapeutic options and monitoring capabilities have made it possible to safely achieve intensive glycemic goals, however widespread availability and cost precludes its common use.

References

[1]  Lynn, L.D. (2009) Historical Note; Frederick Madison Allen, MD. 1879-1964. The Endocrinologist, 19, Article No. 93.
[2]  de Leiva-Hidalgo, A. and de Leiva-Pérez, A. (2020) Experiences of First Insulin-Treated Patients (1922-1923). American Journal of Therapeutics, 27, e13-e23.
https://doi.org/10.1097/MJT.0000000000001069
[3]  Diabetes Control and Complications Trial Research Group (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 329, 977-986.
https://doi.org/10.1056/NEJM199309303291401
[4]  
https://www.chemeurope.com/en/encyclopedia/Elliott_P._Joslin.html
[5]  Hirsch, I.B., Battelino, T., Peters, A.L., Chamberlain, J.J., Aleppo, G. and Bergenstal, R.M. (2018) Role of Continuous Glucose Monitoring in Diabetes Treatment. American Diabetes Association, Arlington.
https://doi.org/10.2337/db20181
[6]  UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). Lancet, 352, 837-853.
https://doi.org/10.1016/S0140-6736(98)07019-6
[7]  Ohkubo, Y., Kishikawa, H., Araki, E., Miyata, T., Isami, S., Motoyoshi, S., Kojima, Y., Furuyoshi, N. and Shichiri, M. (1995) Intensive Insulin Therapy Prevents the Progression of Diabetic Microvascular Complications in Japanese Patients with Non-Insulin-Dependent Diabetes Mellitus: A Randomized Prospective 6-Year Study. Diabetes Research and Clinical Practice, 28, 103-117.
https://doi.org/10.1016/0168-8227(95)01064-K
[8]  The Diabetes Control and Complications Trial Research Group (1995) The Relationship of Glycemic Exposure (HbA1c) to the Risk of Development and Progression of Retinopathy in the Diabetes Control and Complications Trial. Diabetes, 44, 968-983.
https://doi.org/10.2337/diab.44.8.968
[9]  Sipperstein, M.D. and Browner, W.S. (1995) The Case for Moderate Rather than Tight Glucose Control in Insulin-Dependent Diabetes mellitus. Clinical Diabetes, 13, 7-9.
[10]  Krolewski, A.S., Laffel, L.M.B., Krolewski, M., Quinn, M. and Warram, J.H. (1995) Glycosylated Hemoglobin and the Risk of Microalbuminuria in Patients with Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 332, 1251-1255.
https://doi.org/10.1056/NEJM199505113321902
[11]  Viberti, G. (1995) A Glycemic Threshold for Diabetic Complications? New England Journal of Medicine, 332, 1293-1294.
https://doi.org/10.1056/NEJM199505113321909
[12]  American Diabetes Association (1996) The Absence of a Glycemic Threshold for the Development of Long-Term Complications: The Perspective of the Diabetes Control and Complications Trial. Diabetes, 45, 1289-1298.
https://doi.org/10.2337/diab.45.10.1289
[13]  American Diabetes Association (2002) Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care, 25, s28-s32.
https://doi.org/10.2337/diacare.25.2007.S28
[14]  The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes. New England Journal of Medicine, 353, 2643-2653.
https://doi.org/10.1056/NEJMoa052187
[15]  Holman, R.R, Paul, S.K., Bethel, M.A., Matthews, D.R. and Neil, H.A. (2008) 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. New England Journal of Medicine, 359, 1577-1589.
https://doi.org/10.1056/NEJMoa0806470
[16]  Action to Control Cardiovascular Risk in Diabetes Study Group (2008) Effects of Intensive Glucose Lowering in Type 2 Diabetes. New England Journal of Medicine, 358, 2545-2559.
https://doi.org/10.1056/NEJMoa0802743
[17]  ADVANCE Collaborative Group (2008) Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 358, 2560-2572.
https://doi.org/10.1056/NEJMoa0802987
[18]  VADT Study Group (2018) Long-Term Follow-up of Intensive Glycaemic Control on Renal Outcomes in the Veterans Affairs Diabetes Trial. Diabetologia, 61, 295-299.
https://doi.org/10.1007/s00125-017-4473-2
[19]  ORIGIN Trial Investigators (2012) Basal Insulin and Cardiovascular and Other Outcomes in Dysglycemia. New England Journal of Medicine, 367, 319-328.
https://doi.org/10.1056/NEJMoa1203858
[20]  American Diabetes Association (2020) 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43, S66-S76.
https://doi.org/10.2337/dc20-S006
[21]  Ismail-Beigi, F., Moghissi, E., Tiktin, M., Hirsch, I.B., Inzucchi, S.E. and Genuth, S. (2011) Individualizing Glycemic Targets in Type 2 Diabetes Mellitus: Implications of Recent Clinical Trials. Annals of Internal Medicine, 154, 554-559.
https://doi.org/10.7326/0003-4819-154-8-201104190-00007
[22]  Pozzilli, P., Strollo, R. and Bonora, E. (2014) One Size Does Not Fit All Glycemic Targets for Type 2 Diabetes. Journal of Diabetes Investigation, 5, 134-141.
https://doi.org/10.1111/jdi.12206
[23]  Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R. and Matthews, D.R. (2012) Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Spectrum, 25, 154-171.
https://doi.org/10.2337/diaspect.25.3.154
[24]  Masood, M.Q., Singh, K., Kondal, D., Ali, M.K., Mawani, M., Devarajan, R., Menon, U., Varthakavi, P., Viswanathan, V., Dharmalingam, M., Bantwal, G., Sahay, R., Khadgawat, R., Desai, A., Prabhakaran, D., Narayan, K.M.V., Tandon, N., on the Behalf of CARRS Trial Group (2021) Factors Affecting Achievement of Glycemic Targets among Type 2 Diabetes Patients in South Asia: Analysis of the CARRS Trial. Diabetes Research and Clinical Practice, 171, Article ID: 108555.
https://doi.org/10.1016/j.diabres.2020.108555
[25]  Qaseem, A., Wilt, T.J., Kansagara, D., Horwitch, C., Barry, M.J., Forciea, M.A., et al. (2018) Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults with Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians. Annals of Internal Medicine, 168, 569-576.
https://doi.org/10.7326/M17-0939
[26]  Bloomgarden, Z., Einhorn, D., Handelsman, Y., Misra, A., Zonszein, J., Grunberger, G., Jellinger, P.S., Garber, A.J. (2018) American College of Physicians Diabetes Guidelines Attempt to Turn Back the Clock, Conflating Good HbA1c with Hypoglycemia. Journal of Diabetes, 10, 618-620.
https://doi.org/10.1111/1753-0407.12668
[27]  Draznin, B., Nathan, D.M., Korytkowski, M.T., McDonnell, M.E., Golden, S.H., Schutta, M.H. and Cefalu, W.T. (2018) Guidelines versus Guidelines: What’s Best for the Patient? Annals of Internal Medicine, 169, 186-187.
https://doi.org/10.7326/M18-0939
[28]  Riddle, M.C., Gerstein, H.C., Holman, R.R., Inzucchi, S.E., Zinman, B., Zoungas, S. and Cefalu, W.T. (2018) A1C Targets Should Be Personalized to Maximize Benefits While Limiting Risks. Diabetes Care, 41, 1121-1124.
https://doi.org/10.2337/dci18-0018
[29]  Hirsch, I.B. (2005) Insulin Analogues. New England Journal of Medicine, 352, 174-183.
https://doi.org/10.1056/NEJMra040832
[30]  Bergenstal, R.M., Klonoff, D.C., Garg, S.K., Bode, B.W., Meredith, M., Slover, R.H., Ahmann, A.J., Welsh, J.B., Lee, S.W. and Kaufman, F.R., for the ASPIRE In-Home Study Group (2013) Threshold-Based Insulin-Pump Interruption for Reduction of Hypoglycemia. New England Journal of Medicine, 369, 224-232.
https://doi.org/10.1056/NEJMoa1303576
[31]  Marso, S.P., Daniels, G.H., Brown-Frandsen, K., Kristensen, P., Mann, J.F., Nauck, M.A., Nissen, S.E., Pocock, S., Poulter, N.R., Ravn, L.S., Steinberg, W.M., Stockner, M., Zinman, B., Bergenstal, R.M. and Buse, J.B., for the LEADER Steering Committee on behalf of LEADER Trial Investigators (2016) Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 375, 311-322.
https://doi.org/10.1056/NEJMoa1603827
[32]  McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A, Ponikowski, P., Sabatine, M.S., Anand, I.S., Bělohlávek, J., Böhm, M., Chiang, C.E., Chopra, V.K., de Boer, R.A., Desai, A.S., Diez, M., Drozdz, J., Dukát, A., Ge, J., Howlett, J.G., Katova, T., Kitakaze, M., Ljungman, C.E.A., Merkely, B., Nicolau, J.C., O’Meara, E., Petrie, M.C., Vinh, P.N., Schou, M., Tereshchenko, S., Verma, S., Held, C., DeMets, D.L., Docherty, K.F., Jhund, P.S., Bengtsson, O., Sjöstrand, M. and Langkilde, A.M., for the DAPA-HF Trial Committees and Investigators (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008.
https://doi.org/10.1056/NEJMoa1911303
[33]  Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F.F., Mann, J.F.E., McMurray, J.J.V., Lindberg, M., Rossing, P., Sjöström, C.D., Toto, R.D., Langkilde, A.M., Wheeler, D.C., for the DAPA-CKD Trial Committees and Investigators (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/NEJMoa2024816
[34]  Bergenstal, R.M., Beck, R.W., Close, K.L., Grunberger, G., Sacks, D.B., Kowalski, A., Brown, A.S., Heinemann, L., Aleppo, G., Ryan, D.B., Riddlesworth, T.D., Cefalu, W.T., Glucose Management Indicator (GMI) (2018) A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care, 41, 2275-2280.
https://doi.org/10.2337/dc18-1581
[35]  Battelino, T., Danne, T., Bergenstal, R.M., Amiel, S.A., Beck, R., Biester, T., Bosi, E., et al. (2019) Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care, 42, 1593-1603.
https://doi.org/10.2337/dci19-0028
[36]  Ali, M.K., Bullard, K.M., Saaddine, J.B., Cowie, C.C., Imperatore, G. and Gregg, E.W. (2013) Achievement of Goals in U.S. Diabetes Care, 1999-2010. New England Journal of Medicine, 368, 1613-1624.
https://doi.org/10.1056/NEJMsa1213829
[37]  Wang, L., Li, X., Wang, Z., Bancks, M.P., Carnethon, M.R., Greenland, P., Feng, Y.Q., Wang, H. and Zhong, V.W. (2021) Trends in Prevalence of Diabetes and Control of Risk Factors in Diabetes among US Adults, 1999-2018. JAMA, 25, Article ID: e219883.
https://doi.org/10.1001/jama.2021.9883
[38]  American Diabetes Association (2021) 6. Glycemic Targets: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44, S73-S84.
https://doi.org/10.2337/dc21-S006
[39]  Garber, A.J., Handelsman, Y., Grunberger, G., Einhorn, D., Abrahamson, M.J., Barzilay, J.I., Blonde, L., Bush, M.A., DeFronzo, R.A., Garber, J.R., Garvey, W.T., Hirsch, I.B., Jellinger, P.S., McGill, J.B., Mechanick, J.I., Perreault, L., Rosenblit, P.D., Samson, S. and Umpierrez, G.E. (2020) Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology On The Comprehensive Type 2 Diabetes Management Algorithm—2020 Executive Summary. Endocrine Practice, 26, 107-139.
https://doi.org/10.4158/CS-2019-0472
[40]  NICE (National Institute for Health and Care Excellence) (2015) NICE Guideline, Type 2 Diabetes in Adults: Management. National Institute for Health and Care Excellence, London.
https://www.nice.org.uk/guidance/ng28

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133