An exact time-dependent solution of a black hole is found in a conformally invariant gravity model on a warped Randall-Sundrum spacetime, by writing the metric . Here, represents the “un-physical” spacetime and ω the dilaton field, which will be treated on equal footing as any renormalizable scalar field. In the case of a five-dimensional warped spacetime, we thereafter write . The dilaton field can be used to describe the different notion the in-going and outside observers have of the Hawking radiation by using different conformal gauge freedom. The disagreement about the interior of the black hole is explained by the antipodal map of points on the horizon. The free parameters of the solution can be chosen in such a way that is singular-free and topologically regular, even for ω→ 0 . It is remarkable that the 5D and 4D effective field equations for the metric components and dilaton fields can be written in general dimension n = 4,5. From the exact energy-momentum tensor in Eddington-Finkelstein coordinates, we are able to determine the gravitational wave contribution in the process of evaporation of the black hole. It is conjectured that, in context of quantization procedures in the vicinity of the horizon, unitarity problems only occur in the bulk at large extra-dimension scale. The subtraction point in an effective theory will be in the UV only in the bulk, because the use of a large extra dimension results in a fundamental Planck scale comparable with the electroweak scale.
References
[1]
Hawking, S. (1974) Nature, 248, 30-31. https://doi.org/10.1038/248030a0
[2]
Hawking, S. (1975) Communications in Mathematical Physics, 43, 199-220. https://doi.org/10.1007/BF02345020
[3]
‘t Hooft, G. (1993) Dimensional Reduction in Quantum Gravity. Conference on Highlights of Particle and Condensed Matter Physics (SALAMFEST), Trieste, 8-12 March 1993, 184.
Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) JHEP, 2, 62. https://doi.org/10.1007/JHEP02(2013)062
[6]
‘t Hooft, G. (2016) Foundations of Physics, 46, 1185-1198. https://doi.org/10.1007/s10701-016-0014-y
[7]
‘t Hooft, G. (2018) The Firewall Transformation for Black Holes and Some of Its Implications.
[8]
‘t Hooft, G. (1984) Journal of Geometry and Physics, 1, 45-52. https://doi.org/10.1016/0393-0440(84)90013-5
[9]
Sanchez, N. and Whiting, B.F. (1987) Nuclear Physics B, 283, 605-623. https://doi.org/10.1016/0550-3213(87)90289-6
[10]
Sanchez, N. (1986) Two- and Four-Dimensional Semi-Classical Gravity and Conformal Mappings.
[11]
Folacci, A. and Sanchez, N. (1987) Quantum Field Theory and the Antipodal Identification of de Sitter Space. Elliptic Inflation.
[12]
Schrödinger, E. (1957) Expanding Universe. Cambridge Univ. Press, Cambridge.
[13]
‘t Hooft, G. (2018) Discreteness of Black Hole Microstates.
[14]
‘t Hooft, G. (2018) Foundations of Physics, 48, 1134-1149. https://doi.org/10.1007/s10701-017-0133-0
[15]
‘t Hooft, G. (2015) Diagonalizing the Black Hole Information Retrieval Process.
[16]
Zakharov, V.D. (1973) Gravitational Waves in Einstein’s Theory. John Wiley & Sons, Inc., New York.
[17]
Wald, R.M. (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The Univ. of Chicago Press, Chicago.
[18]
Codello, A., D’Odorico, G., Pagani, G. and Percacci, R. (2013) Classical and Quantum Gravity, 30, Article ID: 115015. https://doi.org/10.1088/0264-9381/30/11/115015
[19]
Alvarez, E., Herrero-Valea, M. and Martin, C.P. (2014) JHEP, 10, 214. https://doi.org/10.1007/JHEP10(2014)115
[20]
Slagter, R.J. (2021) Conformal Dilaton Gravity and Warped Spacetimes in 5D.
[21]
Felsager, B. (1998) Geometry, Particles and Fields. Springer, New York. https://doi.org/10.1007/978-1-4612-0631-6
[22]
Mannheim, P.D. (2005) Progress in Particle and Nuclear Physics, 56, 340-445. https://doi.org/10.1016/j.ppnp.2005.08.001
[23]
Randall, L. and Sundrum, R. (1999) Physical Review Letters, 83, 3370-3373. https://doi.org/10.1103/PhysRevLett.83.3370
[24]
Randall, L. and Sundrum, R. (1999) Physical Review Letters, 83, 4690-4693. https://doi.org/10.1103/PhysRevLett.83.4690
[25]
Slagter, R.J. and Pan, S. (2016) Foundations of Physics, 46, 1075. https://doi.org/10.1007/s10701-016-0002-2
[26]
Maldacena, J. and Milekhin, A. (2021) Physical Review D, 103, Article ID: 066007. https://doi.org/10.1103/PhysRevD.103.066007
[27]
Maldacena, J. (2011) Einstein Gravity from Conformal Gravity.
[28]
Islam, J.N. (1985) Rotating Fields in General Relativity. Cambridge Univ. Press, Cambridge. https://doi.org/10.1017/CBO9780511735738
[29]
Shiromizu, T., Maeda, K. and Sasaki, M. (2000) Physical Review D, 62, Article ID: 024012. https://doi.org/10.1103/PhysRevD.62.024012
[30]
Shiromizu, T., Maeda, K. and Sasaki, M. (2003) Physical Review D, 7, Article ID: 084022. https://doi.org/10.1103/PhysRevD.67.084022
[31]
Maartens, R. and Koyama, K. (2010) Living Reviews in Relativity, 13, 5. https://doi.org/10.12942/lrr-2010-5
[32]
Strauss, N.A., Whiting, B.F. and Franzen, A.T. (2020) Classical Tools for Antipodal Identification in Reissner-Nordstrom Spacetime. https://doi.org/10.1088/1361-6382/ab9a9d
[33]
Sofi, A.H., Akhoon, S.A., Rather, A.A. and Maini, A. (2015) Open Access Library Journal, 2, 1. https://doi.org/10.1088/1361-6382/ab9a9d
[34]
Slagter, R.J. (2019) On the Dynamical BTZ Black Hole in Conformal Gravity. In Spacetime 1909-2019. Proceedings Second H. Minkowski Meeting, Albena, May 2019, 17-37.
[35]
Compère, G. (2019) Advanced Lectures on General Relativity. Lecture Notes in Physics 952, Springer, Heidelberg. https://doi.org/10.1007/978-3-030-04260-8
Barrabès, C. and Hogan, P.A. (2013) Advanced General Relativity. Oxford Univ. Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199680696.001.0001
[38]
Choquet-Bruhat, Y. and Geroch, R.P. (1969) Communications in Mathematical Physics, 14, 329-335. https://doi.org/10.1007/BF01645389
[39]
Slagter, R.J. and Miedema, P.G. (2020) Monthly Notices of the Royal Astronomical Society, 459, 3054. https://doi.org/10.1093/mnras/staa3840
[40]
Slagter, R.J. (2021) New Evidence of the Azimuthal Alignment of Quasars Spin Vector in the LQG U1.28, U1.27, U1.11, Cosmologically Explained. https://doi.org/10.20944/preprints202103.0560.v1
[41]
Toth, G. (2002) Finite Möbius Groups, Minimal Immersions of Spheres and Moduli. Springer, Heidelberg. https://doi.org/10.1007/978-1-4613-0061-8
[42]
Klein, F. (1888) Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. Trübner & Co, London.