In this paper, we investigate the elastic wave
full-waveform inversion (FWI) based on the trust region method. The FWI is an
optimization problem of minimizing the misfit between the observed data and
simulated data. Usually, the line
search method is used to update the model parameters iteratively. The line
search method generates a search direction first and then finds a suitable step
length along the direction. In the trust region method, it defines a trial step
length within a certain neighborhood of the current iterate point and then
solves a trust region subproblem. The theoretical methods for the trust region
FWI with the Newton type method are described. The algorithms for the truncated
Newton method with the line search strategy and for the Gauss-Newton method
with the trust region strategy are presented. Numerical computations of FWI for
the Marmousi model by the L-BFGS method, the Gauss-Newton method and the
truncated Newton method are completed. The comparisons between the line search
strategy and the trust region strategy are given and show that the trust region
method is more efficient than the line search method and both the Gauss-Newton
and truncated Newton methods are more accurate than the L-BFGS method.
References
[1]
Tarantola, A. (1984) Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
[2]
Lailly, P. (1983) The Seismic Inverse Problem as a Sequence of before Stack Migrations. In: Bednar, J.B., Robinson, E. and Weglein, A., Eds., Conference on Inverse Scattering—Theory and Application, SIAM, Philadelphia, 206-220.
[3]
Woodhouse, J.H. and Dziewonski, A.M. (1984) Mapping the Upper Mantle: Three-Dimensional Modeling of Earth Structure by Inversion of Seismic Waveforms. Journal of Geophysical Research: Solid Earth, 89, 5953-5986. https://doi.org/10.1029/JB089iB07p05953
[4]
Pratt, R.G. (1999) Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 64, 888-901. https://doi.org/10.1190/1.1444597
[5]
Pratt, R.G. and Worthington, M.H. (1990) Inverse Theory Applied to Multi-Source Cross-Hole Tomography, Part 1: Acoustic Wave-Equation Method. Geophysical Prospecting, 38, 287-310. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
[6]
Sirgue, L. and Pratt, R.G. (2004) Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 69, 231-248. https://doi.org/10.1190/1.1649391
[7]
Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G. (1995) Multiscale Seismic Waveform Inversion. Geophysics, 60, 1457-1473. https://doi.org/10.1190/1.1443880
[8]
Zhang, W. and Luo, J. (2013) Full-Waveform Velocity Inversion Based on the Acoustic Wave Equation. American Journal of Computational Mathematics, 3, 13-20. https://doi.org/10.4236/ajcm.2013.33B003
[9]
Zhang, W. and Joardar, A. (2018) Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain. Journal of Applied Mathematics and Physics, 6, 1086-1110. https://doi.org/10.4236/jamp.2018.65094
[10]
Shin, C. and Cha, Y.H. (2008) Waveform Inversion in the Laplace Domain. Geophysical Journal International, 173, 922-931. https://doi.org/10.1111/j.1365-246X.2008.03768.x
[11]
Kim, Y., Shin, C., Calandra, H. and Min, D.J. (2013) An Algorithm for 3D Acoustic Time-Laplace-Fourier-Domain Hybrid Full Waveform Inversion. Geophysics, 78, R151-R166. https://doi.org/10.1190/geo2012-0155.1
[12]
Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, L. and Virieux, J. (2013) A Guided Tour of Multiparameter Full-Waveform Inversion with Multicomponent Data: From Theory to Practice. The Leading Edge, 32, 1040-1054. https://doi.org/10.1190/tle32091040.1
[13]
Jeong, W., Lee, H.Y. and Min, D.J. (2012) Full Waveform Inversion Strategy for Density in the Frequency Domain. Geophysical Journal International, 188, 1221-1242. https://doi.org/10.1111/j.1365-246X.2011.05314.x
[14]
Xu, K. and McMechan, G.A. (2014) 2D Frequency-Domain Elastic Full-Waveform Inversion Using Time-Domain Modeling and a Multistep-Length Gradient Approach. Geophysics, 79, R41-R53. https://doi.org/10.1190/geo2013-0134.1
[15]
Pratt, R.G., Shin, C. and Hick, G. (1998) Gauss-Newton and Full Newton Methods in Frequency—Space Seismic Waveform Inversion. Geophysical Journal International, 133, 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
[16]
Yang, P., Brossier, R., M’etivier, L., Virieux, J. and Zhou, W. (2018) A Time-Domain Preconditioned Truncated Newton Approach to Visco-Acoustic Multiparameter Full Waveform Inversion. SIAM Journal on Scientific Computing, 40, B1101-B1130. https://doi.org/10.1137/17M1126126
[17]
Plessix, R.E. (2006) A Review of the Adjoint-State Method for Computing the Gradient of a Functional with Geophysical Applications. Geophysical Journal International, 167, 495-503. https://doi.org/10.1111/j.1365-246X.2006.02978.x
[18]
Métivier, L., Bretaudeau, F., Brossier, R., Operto, S. and Virieux, J. (2014) Full Waveform Inversion and the Truncated Newton Method: Quantitative Imaging of Complex Subsurface Structures. Geophysical Prospecting, 62, 1353-1375. https://doi.org/10.1111/1365-2478.12136
[19]
Aki, K. and Richards, P.G. (1980) Quantitative Seismology: Theory and Methods. Freeman, San Francisco.
[20]
Zhang, W., Zhuang, Y. and Zhang, L. (2017) A New High-Order Finite Volume Method for 3D Elastic Wave Simulation on Unstructured Meshes. Journal of Computational Physics, 340, 534-555. https://doi.org/10.1016/j.jcp.2017.03.050
[21]
Virieux, J. (1986) P-SV-Wave Propagation in Heterogeneous Media: Velocitystress Finite-Difference Method. Geophysics, 51, 889-901. https://doi.org/10.1190/1.1442147
[22]
Clayton, R. and Engquist, B. (1977) Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bulletin of the Seismological Society of America, 67, 1529-1540. https://doi.org/10.1785/BSSA0670061529
[23]
Berenger, J.P. (1994) A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
[24]
Komatitsch, D. and Tromp, J. (2003) A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation. Geophysical Journal International, 154, 146-153. https://doi.org/10.1046/j.1365-246X.2003.01950.x
[25]
Nocedal, J. (1980) Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation, 35, 773-782. https://doi.org/10.1090/S0025-5718-1980-0572855-7
[26]
Nocedal, J. and Wright, S.J. (2006) Numerical Optimization. Springer Science & Business Media, New York.
[27]
Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C. (1995) A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16, 1190-1208. https://doi.org/10.1137/0916069
[28]
Métivier, L., Brossier, R., Operto, S. and Virieux, J. (2017) Full Waveform Inversion and the Truncated Newton Method. SIAM Review, 59, 153-195. https://doi.org/10.1137/16M1093239
[29]
Albert, T. (2004) Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia.
[30]
Philip, W. (1969) Convergence Conditions for Ascent Methods. SIAM Review, 11, 226-235. https://doi.org/10.1137/1011036
[31]
David, M.G. (1981) Computing Optimal Locally Constrained Steps. SIAM Journal on Scientific and Statistical Computing, 2, 186-197. https://doi.org/10.1137/0902016
[32]
Sorensen, D.C. (1982) Newton’s Method with a Model Trust Region Modification. SIAM Journal on Numerical Analysis, 19, 409-426. https://doi.org/10.1137/0719026
[33]
Moré, J.J. and Sorensen, D.C. (1983) Computing a Trust Region Step. SIAM Journal on Scientific and Statistical Computing, 4, 553-572. https://doi.org/10.1137/0904038