全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study and Proposal for a Hyperfluorinated Brackish Water Treatment System in the Fatick Region, Case of Diouroup (Senegal)

DOI: 10.4236/ajac.2021.1211024, PP. 392-407

Keywords: Brackish Water, Drinking Water, Fluoride, Reverse Osmosis, Diouroup

Full-Text   Cite this paper   Add to My Lib

Abstract:

Groundwater is the main resource for human consumption in many countries, especially in developing countries. This groundwater is often brackish and hyperfluorinated, which leads to diseases such as dental and bone fluorosis, etc. The water from the Diouroup water drainage facilities, like those from many other water drainage facilities in the regions of Fatick, Kaolack, Diourbel and the area of Touba, is facing this problem. To solve these problems, several physicochemical and membrane methods have been implemented. In this work we have briefly outlined some of these methods and we have chosen one of them, low pressure reverse osmosis. In addition, this technique is very simple to operate and maintain. Reverse osmosis provides good quality water in a single step, without the need for additional sterilization or remineralization treatments. We then carried out simulations with the Reverse Osmosis System Analysis (ROSA) software. For reasonable operating parameters, we have noticed a low feed pressure of 11.58 bars, a good average flow of raw water of 27.79 L/m2/h and a recovery rate of the first pass of 75.01%. The results obtained also showed a good quality of the permeate which respects the recommendations of the World Health Organization (WHO) on drinking water. The fluorides of 0.59 mg/L have a recovery rate of 90.8% while the chlorides of 59.09 mg/L have a recovery rate of 92.12% as for the Total Dissolved Solids of 184.90 mg/L for an abatement of 92%. Finally, the low energy consumption of the process makes it possible to consider it in coupling with an electric supply by photovoltaic solar collectors for isolated sites.

References

[1]  Faye, C. (2017) Water Pollution Challenges, a Threat to Public Health: Strengths and Weaknesses of Water Laws and Policies in Senegal. LARHYSS Journal, 32, 107-126.
[2]  Missaoui, K., Bouguerra, W., Hannachi, C., Gannouni, N. and Hamrouni, B. (2017) Defluoridation of South Tunisian Brackish Water by Alum Coagulation/Flocculation: A Preliminary Work. Journal of Advances in Chemistry, 5, 727-740.
https://doi.org/10.24297/jac.v5i3.6592
[3]  Devi, P.S., Srinivasulu, S. and Raju, K.K. (2001) Hydrogeomorphological and Groundwater Prospects of the Pageru River Basin by Using Remote Sensing Data. Environmental Geology, 40, 1088-1094.
https://doi.org/10.1007/s002540100295
[4]  Pontié, M., Rumeau, M., Ndiaye, M. and Diop, C.M. (1996) Sur le problème de la fluorose au Sénégal: Bilan des connaissances et présentation d’une nouvelle. Cahiers Santé, 6, 27-36.
[5]  Makris, K.C. and Andra, S.S. (2014) Limited Representation of Drinking-Water Contaminants in Pregnancy-Birth Cohorts. Science of the Total Environment, 468-469, 165-175.
https://doi.org/10.1016/j.scitotenv.2013.08.012
[6]  Diawara, C.K. (2004) Contribution à l'étude de la rétention du fluor et de métaux lourds en solution par des procédés membranaires de nanofiltration et d'ultrafiltration. Application à des eaux de boisson de France et du Sénégal et à des solutions de métaux lourds. Université Cheikh Anta Diop de Dakar, Faculté des Science et Technique, Dakar.
[7]  Travi, Y. (1993) Hydrogéologie et hydrochimie des aquifères du Sénégal. Hydrogéochimie du fluor dans les eaux souterraines. Université Louis Pasteur, Institut de géologie, Strasbourg.
[8]  Alarcon-Herrera, M.T., MartIn-Dominguez, I.R., Trejo-Vázquez, R. and Rodriguez-Dozal, S. (2001) Well Water Fluoride, Dental Fluorosis, and Bone Fractures in the Guadiana Valley of Mexico. Fluoride, 34, 139-149.
[9]  Kazi, T.G., Arain, M.B., Jamali, M.K., Jalbani, N., Afridi, H.I., Sarfraz, R.A., et al. (2009) Assessment of Water Quality of Polluted Lake Using Multivariate Statistical Techniques: A Case Study. Ecotoxicology and Environmental Safety, 72, 301-309.
https://doi.org/10.1016/j.ecoenv.2008.02.024
[10]  Raoul, T.A., Toury, J., Perellon, J., Raba, A., Luven, P. and Giorgi, R. (1957) Premières études sur un foyer de fluorose humaine au Sénégal. Bulletin Media AOF, 2, 359-371.
[11]  Chermette, A., et al. (1996) Nouvelles archives du Muséum d'histoire naturelle de Lyon. Musée Guimet d’histoire naturelle, Lyon.
[12]  Diop, S.N., Diawara, C.K., Diasse-Sarr, A., Masse, A., Jaouen, P. and Pontie, M. (2008) Focusing on Excess of Fluoride Removal Process from Drinking Water: Nanofiltration. Journal of Science and Technology, 7, 25-31.
[13]  Pontié, M., et al. (2006) Le problème de la fluorose au Sénégal: Bilan des connaissaances et présenation d'une nouvelle méthode de défluoruration des eaux de boisson. Fluor et Envirennement, 301-302, 2-8.
[14]  Ndiaye, N.S. (2018) Contribution à l’amélioration de la qualité de l’eau distribuée dans la ville de Fatick (Fatick, Sénégal): Construction d’une station de traitement de fluorure et de chlorure. Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou.
[15]  Abdelgawad, A.M., Watanabe, K., Takeuchi, S. and Mizuno, T. (2009) The Origin of Fluoride-Rich Groundwater in Mizunami Area, Japan—Mineralogy and Geochemistry Implications. Engineering Geology, 108, 76-85.
https://doi.org/10.1016/j.enggeo.2009.06.016
[16]  Viero, A.P., Roisenberg, C., Roisenberg, A. and Vigo, A. (2009) The Origin of Fluoride in the Granitic Aquifer of Porto Alegre, Southern Brazil. Environmental Geology, 56, 1707-1719.
https://doi.org/10.1007/s00254-008-1273-5
[17]  Nasr, A.B., Charcosset, C., Amar, R.B. and Walha, K. (2013) Defluoridation of Water by Nanofiltration. Journal of Fluorine Chemistry, 150, 92-97.
https://doi.org/10.1016/j.jfluchem.2013.01.021
[18]  Guilleux, C., Kochoni, é., Campbell, P.G., Blais, J.F. and Fortin, C. (2015) Géochimie et écotoxicologie des fluorures dans les écosystèmes terrestres et aquatiques et méthodes de traitement: Revue de la littérature scientifique. Centre Eau Terre Environnement, Québec.
[19]  Vassilev, S.V., Eskenazy, G.M. and Vassileva, C.G. (2000) Contents, Modes of Occurrence and Origin of Chlorine and Bromine in Coal. Fuel, 79, 903-921.
https://doi.org/10.1016/S0016-2361(99)00236-7
[20]  Berland, J.M. and Juery, C. (2002) Les procédés membranaires pour le traitement de l’eau. Document Technique FNDAE, 71 p.
[21]  Bi, S., Liu, F., Chen, F. and Gan, N. (2000) Speciation of Aluminum Equilibria with Kaolinite in Acidic Natural Water. Journal of Environmental Science & Health, Part A, 35, 1849-1857.
https://doi.org/10.1080/10934520009377080
[22]  Sébastien, B. (2005) Les techniques de traitement des eaux chargees en arsenic, fluor et plomb. Ministère del’Agriculture et de la Pêche, Paris.
[23]  Kurniawan, T.A., Chan, G.Y., Lo, W.H. and Babel, S. (2006) Physico-Chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chemical Engineering Journal, 118, 83-98.
https://doi.org/10.1016/j.cej.2006.01.015
[24]  Fu, F. and Wang, Q. (2011) Removal of Heavy Metal Ions from Wastewaters: A Review. Journal of Environmental Management, 92, 407-418.
https://doi.org/10.1016/j.jenvman.2010.11.011
[25]  Kut, K.M.K., Sarswat, A., Srivastava, A., Pittman, C.U. and Mohan, D. (2016) A Review of Fluoride in African Groundwater and Local Remediation Methods. Groundwater for Sustainable Development, 2-3, 190-212.
https://doi.org/10.1016/j.gsd.2016.09.001
[26]  Groupement SGI /Setico (2013) Rapport Technique Sur L’étude Préliminaire de La Station de Fatick. Sacré Coeur III, Dakar.
[27]  Mazet, P. (2002) Les Eaux Souterraines Riches En Fluor Dans Le Monde. Rapport de stage. Université des Sciences et Technologies, Montpellier.
[28]  Dach, H. (2008) Comparaison Des Opérations de Nanofiltration et D’osmose Inverse Pour Le Dessallement Sélectif Des Eaux Saumatres: De L’echelle Du Laboratoire Au Pilote Industriel. Université d’Angers, Angers.
[29]  Aslam, M., Charfi, A., Lesage, G., Heran, M. and Kim, J. (2017) Membrane Bioreactors for Wastewater Treatment: A Review of Mechanical Cleaning by Scouring Agents to Control Membrane Fouling. Chemical Engineering Journal, 307, 897-913.
http://dx.doi.org/10.1016/j.cej.2016.08.144
[30]  Pontie, M., Buisson, H., Diawara, C.K. and Essis-Tome, H. (2003) Studies of Halide Ions Mass Transfer in Nanofiltration—Application to Selective Defluorination of Brackish Drinking Water. Desalination, 157, 127-134.
https://doi.org/10.1016/S0011-9164(03)00391-6
[31]  Diawara, C.K., Lô, S.M., Rumeau, M., Pontie, M. and Sarr, O. (2003) A Phenomenological Mass Transfer Approach in Nanofiltration of Halide Ions for a Selective Defluorination of Brackish Drinking Water. Journal of Membrane Science, 219, 103-112.
https://doi.org/10.1016/S0376-7388(03)00189-3
[32]  Yang, J., Monnot, M., Ercolei, L. and Moulin, P. (2020) Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-of-the-Art and Performance Analysis. Membranes, 10, Article No. 131.
https://doi.org/10.3390/membranes10060131
[33]  Li, D. and Wang, H. (2010) Recent Developments in Reverse Osmosis Desalination Membranes. Journal of Materials Chemistry, 20, 4551-4566.
https://doi.org/10.1039/b924553g
[34]  Sun, M., Wang, X., Winter, L. R., Zhao, Y., Ma, W., Hedtke, T. and Elimelech, M. (2021) Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 1, 725-752.
https://doi.org/10.1021/acsestengg.1c00015
[35]  Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E. and Singh, P. (2009) Review of Fluoride Removal from Drinking Water. Journal of Environmental Management, 91, 67-77.
https://doi.org/10.1016/j.jenvman.2009.08.015
[36]  Walha, K., Amar, R.B., Quemeneur, F. and Jaouen, P. (2007) Demineralisation des eaux saumatres du sud tunisien par electrodialyse ou par osmose inverse. Journal Societe Chimique De Tunisie, 9, 133-142.
[37]  Figoli, A., Hoinkis, J. and Bundschuh, J. (2016) Membrane Technologies for Water Treatment: Removal of Toxic Trace Elements with Emphasis on Arsenic, Fluoride and Uranium. Johnson Matthey Technology Review, 60, 273-276.
https://doi.org/10.1595/205651316X693283
[38]  Malago, J., Makoba, E. and Muzuka, A.N. (2020) Spatial Distribution of Arsenic, Boron, Fluoride, and Lead in Surface and Groundwater in Arumeru District, Northern Tanzania. Fluoride, 53, 356-386.
[39]  Sene, H., Ngom, B., Gassama, D. and Tamba, S. (2019) Contribution to the Physico-Chemical Study of Groundwater in Senegal’s Groundnut Basin. Journal of Scientific and Engineering Research, 6, 22-29.
[40]  Sene, H., Gassama, D., Ngom, B. and Tamba, S. (2019) Underground Risk Study by Principal Component Analysis: Case of Groundwater Application of the Groundnut Basin of Senegal. Journal of Scientific and Engineering Research, 6, 42-46.
[41]  Bose, S., Yashoda, R. and Puranik, M.P. (2018) A Review on Defluoridation in India. International Journal of Applied Dental Sciences, 4, 167-171.
[42]  Haldar, D., Duarah, P. and Purkait, M.K. (2020) MOFs for the Treatment of Arsenic, Fluoride and Iron Contaminated Drinking Water: A Review. Chemosphere, 251, Article ID: 126388.
https://doi.org/10.1016/j.chemosphere.2020.126388

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133