In this paper we propose a new gauge term in addition to the conventional gauge to acquire complete solution for the linear approximated gravitational equation. The calculation to make general form for the linear gravitational equation uses the well-known N?ether’s theorem saying that gauge symmetry is equal to conservation law. The unsolved coefficients in the equation require another condition which is leading to new gauge term. This proposed new gauge is a tensor product by a scalar quantity with a metric tensor having the trace value of 2. The scalar component in the 5th row and column of Kaluza-Klein’s metric tensor can be found as 2 diagonal components in our proposed 4×4 metric tensor. We also show that only a constant scalar gauge can be allowed in the curved space-time although arbitrary gauge can exist in the linear space-time.
References
[1]
Theodor, K. (1921) Zum Unitätsproblem in der Physik (PDF). Sitzungsberichte der Preussischen Akademie der Wissenschaften (Physikalisch-Mathematische Klasse). PP. 966-972.
[2]
Straub, W.O. (2008) Kaluza Klein Theory Pasadena, California. www.physicsforums.com/attachments/kaluza-klein-straub-pdf.55316/
[3]
Oskar, K. (1926) Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37, 895-906. https://doi.org/10.1007/BF01397481
[4]
Yun, Y.H., Jang, K. and Sung, Y.K. (2021) Unification of Gravitational and Electromagnetic Fields Using Gauge Symmetry. Journal of High Energy Physics, Gravitation and Cosmology, 7, 344-351. https://doi.org/10.4236/jhepgc.2021.71018
[5]
Yun, Y.H. and Jang, K. (2021) Unification of Gravitational and Electromagnetic Fields in Curved Space-Time Using Gauge Symmetry of Bianchi Identities. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1202-1212. https://doi.org/10.4236/jhepgc.2021.73071
[6]
Ruffini, O. (1994) Gravitation and Spacetime. 2nd Edition, W. W. Norton & Company, New York, 134-146.
[7]
Emmy, N. (1918) Invariante Variationsprobleme. Nachrichten von der Königliche Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235-257.
[8]
Emmy, N. (1971) Invariant Variation Problems. Transport Theory and Statistical Physics, 1, 186-207. https://doi.org/10.1080/00411457108231446
[9]
Kentaro, Y. (1957) The Theory of Lie Derivatives and Its Applications. Bibliotheca Mathematica 3. Amsterdam, New York, North-Holland.
[10]
Su, L.G. (2019) Aha! General Theory of Relativity. YESM Publishing Co. Ltd., Seoul, 74-76.