全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gold Nanoparticles Incorporated with Cyclodextrins and Its Applications

DOI: 10.4236/jbnb.2021.124007, PP. 79-97

Keywords: Gold Nanoparticles, Cyclodextrins, Sensors, Antimicrobe, Biomedicine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cyclodextrins are naturally oligosaccharides which had cyclic glucopyranoside units even if six units to form α-cyclodextrin (α-CD), seven units β-cyclodextrin (β-CD) or eight units γ-cyclodextrin (γ-CD) and some other derivatives. It has a truncated cone shape with a hydrophobic cavity and a hydrophilic from the external surface of cyclodextrins. Gold nanoparticles incorporated with cyclodextrins enhanced optical and electrical properties of the resulting conjugates, due to the gold nanoparticles’ unique physical and chemical properties because of their surface plasmon resonance. Here is a review of gold nanoparticles/cyclodextrin’s different applications including sensing, antimicrobial effect, and their variable medical/pharmaceutical applications. Generally, gold nanoparticles and cyclodextrin conjugates showed developed and pronounced advantages due to their biocompatibility and enhanced physical and electric properties.

References

[1]  Connors, K.A. (1997) The Stability of Cyclodextrin Complexes in Solution. Chemical Reviews, 97, 1325-1358.
https://doi.org/10.1021/cr960371r
[2]  Ramos, D.S., Da Silva, P.B., Spósito, L., De Toledo, L.G., Bonifácio, B.V., Rodero, C.F., Dos Santos, K.C., Chorilli, M. and Bauab, T.M. (2018) Nanotechnology-Based Drug Delivery Systems for Control of Microbial Biofilms: A Review. International Journal of Nanomedicine, 13, 1179-1213.
https://doi.org/10.2147/IJN.S146195
[3]  Li, S. and Purdy, W.C. (1992) Cyclodextrins and Their Applications in Analytical Chemistry. Chemical Reviews, 92, 1457-1470.
https://doi.org/10.1021/cr00014a009
[4]  Coelho, L., Almeida, I.F., Sousa Lobo, J.M. and Sousa e Silva, J.P. (2018) Photostabilization Strategies of Photosensitive Drugs. International Journal of Pharmaceutics, 541, 19-25.
https://doi.org/10.1016/j.ijpharm.2018.02.012
[5]  Das, S.K., Kahali, N., Bose, A. and Khanam, J. (2018) Physicochemical Characterization and in Vitro Dissolution Performance of Ibuprofen-Captisol® (Sulfobutylether Sodium Salt of β-CD) Inclusion Complexes. Journal of Molecular Liquids, 261, 239-249.
https://doi.org/10.1016/j.molliq.2018.04.007
[6]  Adeoye, O., Costa, C., Casimiro, T., Aguiar-Ricardo, A. and Cabral-Marques, H. (2018) Preparation of Ibuprofen/Hydroxypropyl-γ-Cyclodextrin Inclusion Complexes Using Supercritical CO2-Assisted Spray Drying. The Journal of Supercritical Fluids, 133, 479-485.
https://doi.org/10.1016/j.supflu.2017.11.009
[7]  Wu, Y., Xiao, Y., Yue, Y., Zhong, K., Zhao, Y. and Gao, H. (2020) A Deep Insight into Mechanism for Inclusion of 2R, 3R-Dihydromyricetin with Cyclodextrins and the Effect of Complexation on Antioxidant and Lipid-Lowering Activities. Food Hydrocolloids, 103, Article ID: 105718.
https://doi.org/10.1016/j.foodhyd.2020.105718
[8]  Guzzo, T., Mandaliti, W., Nepravishta, R., Aramini, A., Bodo, E., Daidone, I., Paci, M., et al. (2016) Conformational Change in the Mechanism of Inclusion of Ketoprofen in β-Cyclodextrin: NMR Spectroscopy, ab Initio Calculations, Molecular Dynamics Simulations, and Photoreactivity. The Journal of Physical Chemistry B, 120, 10668-10678.
https://doi.org/10.1021/acs.jpcb.6b07913
[9]  Yang, X., Zhao, Y., Chen, Y., Liao, X., Gao, C., Xiao, D., Yang, B., et al. (2013) Host-Guest Inclusion System of Mangiferin with β-Cyclodextrin and Its Derivatives. Materials Science and Engineering: C, 33, 2386-2391.
https://doi.org/10.1016/j.msec.2013.02.002
[10]  Pereva, S., Nikolova, V., Sarafska, T., Angelova, S., Spassov, T. and Dudev, T. (2020) Inclusion Complexes of Ibuprofen and β-Cyclodextrin: Supramolecular Structure and Stability. Journal of Molecular Structure, 1205, Article ID: 127575.
https://doi.org/10.1016/j.molstruc.2019.127575
[11]  Ciulu-Costinescu, F., Podgoreanu, P., Delcaru, C., Simionescu, A., Georgescu, E.F., Bostan, M. and Chifiriuc, M.C. (2019) Antimicrobial Assay of a Capsaicin-α-Cyclodextrin Inclusion Complex against Planktonic and Adherent Cells. Farmacia, 67, 496-503.
https://doi.org/10.31925/farmacia.2019.3.18
[12]  Guan, M.Y., Shi, R., Zheng, Y.Y., Zeng, X., Fan, W.Y., Wang, Y.G. and Su, W.W. (2020) Characterization, in Vitro and in Vivo Evaluation of Naringenin-Hydroxypropyl-β-Cyclodextrin Inclusion for Pulmonary Delivery. Molecules, 25, Article ID: 554.
https://doi.org/10.3390/molecules25030554
[13]  Ivansyah, A.L., Nurhidayah, E.S., Sundari, C.D.D., Martoprawiro, M.A. and Buchari, B. (2019) Computational Study of Inclusion Complex between Omeprazole Enantiomer and β-Cyclodextrin: NBO and RDG Analysis. Journal of Physics: Conference Series, 1402, Article ID: 055068.
https://doi.org/10.1088/1742-6596/1402/5/055068
[14]  Carneiro, S.B., Duarte, C., ílary, F., Heimfarth, L., Quintans, S., de Souza, J., et al. (2019) Cyclodextrin-Drug Inclusion Complexes: In Vivo and in Vitro Approaches. International Journal of Molecular Sciences, 20, Article ID: 642.
https://doi.org/10.3390/ijms20030642
[15]  Gentili, A. (2020) Cyclodextrin-Based Sorbents for Solid Phase Extraction. Journal of Chromatography A, 1609, Article ID: 460654.
https://doi.org/10.1016/j.chroma.2019.460654
[16]  García-Pérez, P., Losada-Barreiro, S., Gallego, P. P. and Bravo-Díaz, C. (2019) Cyclodextrin-Elicited Bryophyllum Suspension Cultured Cells: Enhancement of the Production of Bioactive Compounds. International Journal of Molecular Sciences, 20, Article ID: 5180.
https://doi.org/10.3390/ijms20205180
[17]  Paczkowska, M., Szymanowska-Powałowska, D., Mizera, M., Siąkowska, D., Błaszczak, W., Piotrowska-Kempisty, H. and Cielecka-Piontek, J. (2019) Cyclodextrins as Multifunctional Excipients: Influence of Inclusion into β-Cyclodextrin on Physicochemical and Biological Properties of Tebipenem Pivoxil. PloS ONE, 14, e0210694.
https://doi.org/10.1371/journal.pone.0210694
[18]  de Almeida Magalhães, T.S.S., de Oliveira Macedo, P.C., Kawashima Pacheco, S.Y., Silva, S.S.D., Barbosa, E.G., Pereira, R.R., et al. (2020) Development and Evaluation of Antimicrobial and Modulatory Activity of Inclusion Complex of Euterpe oleracea Mart Oil and β-Cyclodextrin or HP-β-Cyclodextrin. International Journal of Molecular Sciences, 21, Article ID: 942.
https://doi.org/10.3390/ijms21030942
[19]  da CunhaTrajano, V.C., Brasileiro, C.B., de Souza Henriques, J.A., de Miranda Cota, L., Lanza, C.R. and Cortés, M.E. (2019) Doxycycline Encapsulated in β-Cyclodextrin for Periodontitis: A Clinical Trial. Brazilian Oral Research, 33, Article ID: 0112.
https://doi.org/10.1590/1807-3107bor-2019.vol33.0112
[20]  Santos, C.I., Ribeiro, A.C. and Esteso, M.A. (2019) Drug Delivery Systems: Study of Inclusion Complex Formation between Methylxanthines and Cyclodextrins and Their Thermodynamic and Transport Properties. Biomolecules, 9, Article ID: 196.
https://doi.org/10.3390/biom9050196
[21]  Zhang, J.Q., Wu, D., Jiang, K.M., Zhang, D., Zheng, X., Wan, C.P., Lin, J., et al. (2015) Preparation, Spectroscopy and Molecular Modelling Studies of the Inclusion Complex of Cordycepin with Cyclodextrins. Carbohydrate Research, 406, 55-64.
https://doi.org/10.1016/j.carres.2015.01.005
[22]  Ren, Z., Xu, Y., Lu, Z., Wang, Z., Chen, C., Guo, Y., Zheng, Y., et al. (2019) Construction of a Water-Soluble and Photostable Rubropunctatin/β-Cyclodextrin Drug Carrier. RSC Advances, 9, 11396-11405.
https://doi.org/10.1039/C9RA00379G
[23]  Ko, N.R., Van, S.Y., Hong, S.H., Kim, S.Y., Kim, M., Lee, J.S., Oh, S.J., et al. (2020) Dual pH-and GSH-Responsive Degradable PEGylated Graphene Quantum Dot-Based Nanoparticles for Enhanced HER2-Positive Breast Cancer Therapy. Nanomaterials, 10, Article ID: 91.
https://doi.org/10.3390/nano10010091
[24]  Bezamat, J.M., Yokaichiya, F., Franco, M.K.D., Castro, S.R., de Paula, E. and Cabeça, L.F. (2020) Complexation of the Local Anesthetic Pramoxine with Hydroxypropyl-Beta-Cyclodextrin Can Improve Its Bioavailability. Journal of Drug Delivery Science and Technology, 55, Article ID: 101475.
https://doi.org/10.1016/j.jddst.2019.101475
[25]  Moradi, S., Barati, A., Tonelli, A.E. and Hamedi, H. (2020) Chitosan-Based Hydrogels Loading with Thyme Oil Cyclodextrin Inclusion Compounds: From Preparation to Characterization. European Polymer Journal, 122, Article ID: 109303.
https://doi.org/10.1016/j.eurpolymj.2019.109303
[26]  Andriotis, E.G., Eleftheriadis, G.K., Karavasili, C. and Fatouros, D.G. (2020) Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology. Pharmaceutics, 12, Article ID: 56.
https://doi.org/10.3390/pharmaceutics12010056
[27]  Fenyvesi, E., Vikmon, M. and Szente, L. (2016). Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations. Critical Reviews in Food Science and Nutrition, 56, 1981-2004.
https://doi.org/10.1080/10408398.2013.809513
[28]  Pourreza, N. and Naghdi, T. (2017) D-Limonene as a Green Bio-Solvent for Dispersive Liquid-Liquid Microextraction of β-Cyclodextrin Followed by Spectrophotometric Determination. Journal of Industrial and Engineering Chemistry, 51, 71-76.
https://doi.org/10.1016/j.jiec.2017.02.016
[29]  da Silva Júnior, W.F., de Oliveira Pinheiro, J.G., Moreira, C.D., de Souza, F.J. and de Lima, á.A. (2017) Alternative Technologies to Improve Solubility and Stability of Poorly Water-Soluble Drugs. In: Grumezescu, A.M., Ed., Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, Elsevier, Singapore, 281-305.
https://doi.org/10.1016/B978-0-323-52725-5.00015-0
[30]  Banerjee, R., Sinha, R. and Purkayastha, P. (2019) β-Cyclodextrin Encapsulated Coumarin 6 on Graphene Oxide Nanosheets: Impact on Ground-State Electron Transfer and Excited-State Energy Transfer. ACS Omega, 4, 16153-16158.
https://doi.org/10.1021/acsomega.9b02335
[31]  Mie, G. (1908) Articles on the Optical Characteristics of Turbid Tubes, Especially Colloidal Metal Solutions. Annalen der Physik, 330, 377-445.
https://doi.org/10.1002/andp.19083300302
[32]  Gao, X.Y., Chen, G. and Ning, L.H. (2013) Plasmonic Characteristics of Nanorod-Based Metallic Nanostructures. Optics & Laser Technology, 48, 394-400.
https://doi.org/10.1016/j.optlastec.2012.10.036
[33]  Mulvaney, P. (1996) Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 12, 788-800.
https://doi.org/10.1021/la9502711
[34]  Stephan, L. and El-Sayed, M.A. (1999) Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B, 103, 8410-8426.
https://doi.org/10.1021/jp9917648
[35]  Ralph, W. (2001) A Clearer Vision for in Vivo Imaging. Nature Biotechnology, 19, 316-317.
https://doi.org/10.1038/86684
[36]  Jiang, Z.M., Li, G.Y. and Zhang, M.X. (2017) A Novel Electrochemical Sensor Based on SH-β-Cyclodextrin Functionalized Gold Nanoparticles/Reduced-Graphene Oxide Nanohybrids for Ultrasensitive Electrochemical Sensing of Acetaminophen and Ofloxacin. International Journal of Electrochemical Science, 12, 5157-5173.
https://doi.org/10.20964/2017.06.28
[37]  Shin, M.J. and Shin, J.S. (2020) A Molecularly Imprinted Polymer Undergoing a Color Change Depending on the Concentration of Bisphenol A. Microchimica Acta, 187, Article No. 44.
https://doi.org/10.1007/s00604-019-4050-0
[38]  Yang, Y. (2016) Electrochemical Sensor for Ultrasensitive Determination of Bisphenol ABased on Gold Nanoparticles/β-Cyclodextrin Functionalized Reduced Graphene Oxide Nanocomposite. International Journal of Electrochemical Science, 11, 2778-2789.
https://doi.org/10.20964/110402778
[39]  Luo, S.X., Wu, Y.H., Mou, Q.S., Li, J.H. and Luo, X.X. (2019) A Thio-β-Cyclodextrin Functionalized Graphene/Gold Nanoparticle Electrochemical Sensor: A Study of the Size Effect of the Gold Nanoparticles and the Determination of Tetrabromobisphenol A. RSC Advances, 9, 17897-17904.
https://doi.org/10.1039/C9RA02614B
[40]  Manickam, P., Vashist, A., Madhu, S., Sadasivam, M., Sakthivel, A., Kaushik, A. and Nair, M. (2020) Gold Nanocubes Embedded Biocompatible Hybrid Hydrogels for Electrochemical Detection of H2O2. Bioelectrochemistry, 131, Article ID: 107373.
https://doi.org/10.1016/j.bioelechem.2019.107373
[41]  Yadav, M., Das, M., Bhatt, S., Shah, P., Jadeja, R. and Thakore, S. (2021) Rapid Selective Optical Detection of Sulfur Containing Agrochemicals and Amino Acid by Functionalized Cyclodextrin Polymer Derived Gold Nanoprobes. Microchemical Journal, 169, Article ID: 106630.
https://doi.org/10.1016/j.microc.2021.106630
[42]  Neri, G., Cordaro, A., Scala, A., Cordaro, M., Mazzaglia, A. and Piperno, A. (2021) PEGylated Bis-Adamantane Carboxamide as Guest Bridge for Graphene Poly-Cyclodextrin Gold Nanoassemblies. Journal of Molecular Structure, 1240, Article ID: 130519.
https://doi.org/10.1016/j.molstruc.2021.130519
[43]  Kapan, B., Kurbanoglu, S., Esenturk, E.N., Soylemez, S. and Toppare, L. (2021) Electrochemical Catechol Biosensor Based on β-Cyclodextrin Capped Gold Nanoparticles and Inhibition Effect of Ibuprofen. Process Biochemistry, 108, 80-89.
https://doi.org/10.1016/j.procbio.2021.06.004
[44]  Wu, H., Fang, F., Wang, C., Hong, X., Chen, D. and Huang, X. (2021) Selective Molecular Recognition of LowDensity Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. Biosensors, 11, Article ID: 216.
https://doi.org/10.3390/bios11070216
[45]  Olmo, J.A.D., Ruiz-Rubio, L., Pérez-Alvarez, L., Sáez-Martínez, V. and Vilas-Vilela, J.L. (2020) Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings, 10, Article ID: 139.
https://doi.org/10.3390/coatings10020139
[46]  Raquel, B., Nerín, C. and Filomena, S. (2020) Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules, 25, Article ID: 1134.
https://doi.org/10.3390/molecules25051134
[47]  Bindhu, M.R., Saranya, P., Sheeba, M., Vijilvani, C., Rejiniemon, T.S., Al-Mohaimeed, A.M., AbdelGawwad, M.R. and Elshikh, M.S. (2021) Functionalization of Gold Nanoparticles by β-Cyclodextrin as a Probe for the Detection of Heavy Metals in Water and Photocatalytic Degradation of Textile Dye. Environmental Research, 201, Article ID: 111628.
https://doi.org/10.1016/j.envres.2021.111628
[48]  Qu, H.N., Yang, L.R., Yu, J.M., Dong, T.T., Rong, M., Zhang, J.F., Xing, H.F., Wang, L., Pan, F. and Liu, H.Z. (2017) A Redox Responsive Controlled Release System Using Mesoporous Silica Nanoparticles Capped with Au Nanoparticles. RSC Advances, 7, 35704-35710.
https://doi.org/10.1039/C7RA04444E
[49]  Trapani, M., Scala, A., Mineo, P.G., Pistone, A., Díaz-Moscoso, A., Fragoso, A., Scolaro, L.M. and Mazzaglia, A. (2021) Thiolated Amphiphilic β-Cyclodextrin-Decorated Gold Colloids: Synthesis, Supramolecular Nanoassemblies and Controlled Release of Dopamine. Journal of Molecular Liquids, 336, Article ID: 116880.
https://doi.org/10.1016/j.molliq.2021.116880
[50]  Qiu, J.R., Kong, L.D., Cao, X.Y., Li, A.J., Wei, P., Lu, W., Mignani, S., Caminade, A.M., Majoral, J.P. and Shi, X.Y. (2018) Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer-Entrapped Gold Nanoparticles Conjugated with β-Cyclodextrin. Nanomaterials, 8, Article ID: 131.
https://doi.org/10.3390/nano8030131
[51]  Pestovsky, Y.S. and Martínez-Antonio, A. (2018) Gold Nanoparticles with Immobilized β-Cyclodextrin-Capsaicin Inclusion Complex for Prolonged Capsaicin Release. IOP Conference Series: Materials Science and Engineering, 389, Article ID: 012030.
https://doi.org/10.1088/1757-899X/389/1/012030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133