In the context of climate change, the study of the variability of the climatic extremes in several regions of the world is of capital importance. This study has as main objective to analyze the variability of extreme temperature events in the Beninese basin of the Niger River for the recent and the near future. To achieve this objective, seven (07) extreme temperature indices based on historical daily temperature observations (1976 to 2019) and REMO RCM simulation outputs of RCP4.5 and RCP8.5 scenarios (2021-2050) were calculated. The obtained results were represented by calculating the means for each index and analyzing the trends and their significance by the Mann-Kendall method. The results show that the indices of extreme temperature intensity (TNn, TXx, and DTR), and those related to the frequency of warm sequences (WSDI, TN90p and TX90p) have experienced a significant increase in the past. This increase will continue until 2050. In contrast, the cold sequence frequency index (CSDI) decrease over the historical period as well as over the future period. These indices show much more change with the RCP8.5 scenario than with the RCP4.5 of the REMO climate model. Only the TXx and CSDI indices show statistically significant changes at all stations.
References
[1]
AMMA ISSC (2005). The International Science Plan for AMMA, Final Version, May 2005.
[2]
Badara, S. A., & Camara, M. (2017). Evolution Des Indices Pluviométriques Extrêmes Par L’analyse De Modèles Climatiques Régionaux Du Programme CORDEX: Les Projections Climatiques Sur Le Sénégal. European Scientific Journal, 13, 206. https://doi.org/10.19044/esj.2017.v13n17p206
[3]
Badou, F. D. (2016). Multi-Model Evaluation of Blue and Green Water Availability under Climate Change in Four-Non Sahelian Basins of the Niger River Basin (155 p). These de Doctorat, University of Abomey-Calavi (UAC), Institut National de l’Eau (INE).
[4]
Bush, M., & Flenley, J. (2007). Tropical Rainforest Responses to Climatic Change (225 p). Springer. https://doi.org/10.1007/978-3-540-48842-2
[5]
Frei, C. (2008). Analysis of Climate and Weather Data. Federal Office of Meteorology and Climatology, Meteo Schweiz.
[6]
GICC-RexHySS (2011). Résultat de projet, programme piren-seine, Programme Interdisciplinaire de Recherche sur l’Environnement de la Seine, Impact du changement climatique sur les ressources en eau du bassin versant de la Seine.
[7]
Gnanglè, C. P., Glèlè Kakaï, R., Assogbadjo, A., Vodounnon, S., Yabi, J. A., & Sokpon, N. (2011). Tendances climatiques passées, modélisation, perceptions et adaptations locales au Benin. Climatologie, 8, 27-40. https://doi.org/10.4267/climatologie.259
[8]
Graham, L. P., Andréasson, J., & Carlsson, B. (2007). Assessing Climate Change Impacts on Hydrology from an Ensemble of Regional Climate Models, Model Scales and Linking Methods—A Case Study on the Lule River basin. Climatic Change, 81, 293-307. https://doi.org/10.1007/s10584-006-9215-2
[9]
Haidu, I. (2009). Extrêmes climatiques : genèse modélisation et impacts, Numéro spécial dédié au XXIIème colloque de l’association internationale de climatologie, 90ème anniversaire de l’Université Romaine de Cluj.
[10]
IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
[11]
IPCC (Intergovernmental Panel on Climate Change) GIEC (2013). Changements climatiques en 2013, Les éléments scientifiques, résumé à l’intention des décideurs, service d’appui.
[12]
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., Hagemann, S., Hirschi, M., Kjellström, E., Lenderink, G., Rockel, B., Schär, C., Seneviratne, S.I., Somot, S., van Ulden, A., & van den, Hurk B. (2007). An Inter-Comparison of Regional Climate Models for Europe: Design of the Experiments and Model Performance. Climatic Change, 81, 31-52. https://doi.org/10.1007/s10584-006-9213-4
[13]
Janicot, S., Thorncroft, C., Ali, A., Asencio, N., Berry, G., Bock, O., Bourlès, B., Caniaux, G., Chauvin, F., Deme, A., Kergoat, L., Lafore, J.-P., Lavaysse, C., Lebel, T., Marticorena, B., Mounier, F., Nedelec, P., Redelsperger, J.-L., Ravegnani, F., Reeves, C. E., Roca, R., De Rosnay, P., Schlager, H., Sultan, B., Tomasini, M., & Ulanovsky, A. (2008). Large-Scale Overview of the Summer Monsoon over West Africa during the AMMA Field Experiment in 2006. Annales Geophysicae, 26, 2569-2595. https://doi.org/10.5194/angeo-26-2569-2008
[14]
Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias Correction of Daily Precipitation Simulated by a Regional Climate Model: A Comparison of Methods. International Journal of Climatology, 33, 1367-1381. https://doi.org/10.1002/joc.3518
[15]
Leggett, J., Pepper, W. J., & Swart, R. J. (1992). Emissions Scenarios for IPCC: An Update. In J. T. Houghton, B. A. Callander, & S. K. Varney (Eds.), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment (pp. 69-95). Cambridge University Press.
[16]
Mahamoud, A., Manzo, O. L., & Ozer, P. (2011). évolution récente des extrêmes pluviométriques et des températures à Djibouti.
[17]
Moore, K., Pierson, D., Pettersso, K., Schneiderman, E., & Samuelsson, P. (2008). Effects of Warmer World Scenarios on Hydrologic Inputs to Lake Mälaren, Sweden and Implications for Nutrient Loads. Hydrobiologia, 599, 191-199. https://doi.org/10.1007/s10750-007-9197-8
[18]
New M., Hewitson, B., Stephenson, D. B., Tsiga, A., Kruger, A., Manhique, A., Gomez, B., Coelho, C. A. S., Masisi, D. N., Kululanga, E., Mbambalala, E., Adesina, F., Saleh, H., Kanyanga, J., Adosi, J., Bulane, L., Fortunata, L., Mdoka, M. L., & Lajoie, R. (2006). Evidence of Trends in Daily Climate Extremes over Southern and West Africa. Journal of Geophysical Research, 111, D14102. https://doi.org/10.1029/2005JD006289
[19]
Obada, E. (2017). Approche de quantification des changements récents et futurs de quelques paramètres hydro-climatiques dans le bassin de la Mékrou (Bénin) (212 p). Univerté d’Abomoy-Calavi, ICMPA.
[20]
Rajczak, J. (2016). Robust Climate Scenarios for Sites with Sparse Observations: A Two-Step Bias Correction Approach. International Journal of Climatology, 36, 1226-1243. https://doi.org/10.1002/joc.4417
[21]
Saurwein, D. (2016). Analyse des tendances passées et futures de variables météorologiques pour des stations de mesure de moyenne et haute altitude en Suisse (74 p). Rapport 3e année BSc, TRP.
[22]
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., & Bierkens, M. F. P. (2010). The Ability of a GCM-Forced Hydrological Model to Reproduce Global Discharge Variability. Hydrology and Earth System Sciences, 14, 1595-1621. https://doi.org/10.5194/hess-14-1595-2010
[23]
Tramblay, Y., Gachon, P., Saint-Hilaire, A., & Chaumont, D. (2005). Variabilité et extrêmes de température et de précipitation entre 1941 et 2000: Le cas du golfe du fleuve saint Laurent. INRS-ETE, rapport de recherche R-805.
[24]
Zhang, X. B., & Yang, F. (2004). RClimDex (1.0), User Manual, Climate Research Branch, Environment Canada (23 p). Downsview.