全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Surface Modification of Cellulose with Silanes for Adhesive Application: Review

DOI: 10.4236/ojpchem.2021.112002, PP. 11-30

Keywords: Cellulose, Biopolymer, Silane Modification, Adhesive, Renewable Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

There has been an increasing interest in research on using bio-renewable polymers as a replacement to traditional synthetic polymers based on petroleum resources for adhesive applications. Cellulose, which is the most abundant biopolymer finds application as a reinforcing agent in conventional adhesives. However, natural polymer cellulose suffers from a few drawbacks like poor water resistance, low mechanical strength, and compatibility within the hydrophobic matrix. For emerging as sustainable alternatives for synthetic polymers, cellulose and its derivatives must have comparable physical, chemical, thermal, and mechanical properties to those of synthetic polymers. To achieve this, cellulose has been chemically modified as it has free hydroxyl groups which act as a site for modification. Among various techniques used crosslinking and silane modification have shown better properties. Various silanes have been identified and used for modifying both micro-cellulose and nano-cellulose, by the formation of covalent bonds. Silanes have the ability to react with the low number of free hydroxyl groups present in the cellulose surfaces, therefore promotes surface modification. Hence referring to the increase in the research works related to the silane modification of cellulose and its applicability focusing on wood adhesives, the main aim of this review paper is to summarize various works relating to this field.

References

[1]  Bhave, P.P. and Kulkarni, N. (2015) Air Pollution and Control Legislation in India. Journal of the Institution of Engineers (India): Series A, 96, 259-265.
https://doi.org/10.1007/s40030-015-0125-z
[2]  Ragothaman, A. and Anderson, W.A. (2017) Air Quality Impacts of Petroleum Refining and Petrochemical Industries. Environments, 4, Article No. 66.
[3]  Achudume, A.C. (2009) The Effect of Petrochemical Effluent on the Water Quality of Ubeji Creek in Niger Delta of Nigeria. Bulletin of Environmental Contamination and Toxicology, 83, 410-415.
https://doi.org/10.3390/environments4030066
[4]  Choi, C.J., Berges, J.A. and Young, E.B. (2012). Rapid Effects of Diverse Toxic Water Pollutants on Chlorophyll a Fluorescence: Variable Responses among Freshwater Microalgae. Water Research, 46, 2615-2626.
https://doi.org/10.1016/j.watres.2012.02.027
[5]  Wang, S., Xu, Y., Lin, Z., Zhang, J., Norbu, N. and Liu, W. (2017) The Harm of Petroleum-Polluted Soil and Its Remediation Research. AIP Conference Proceedings, 1864, Article ID: 020222.
https://doi.org/10.1063/1.4993039
[6]  UN Environment Programme (2018) Plastic Planet: How Tiny Plastic Particles Are Polluting Our Soil. UN Environment Programme: News & Stories.
https://www.unep.org/news-and-stories/story/plastic-planet-how-tiny-plastic-particles-are-polluting-our-soil
[7]  Flaris, V. and Singh, G. (2009) Recent Developments in Biopolymers. Journal of Vinyl and Additive Technology, 15, 1-11.
https://doi.org/10.1002/vnl.20171
[8]  Tang, X.Z., Kumar, P., Alavi, S. and Sandeep, K.P. (2012) Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Critical Reviews in Food Science and Nutrition, 52, 426-442.
https://doi.org/10.1080/10408398.2010.500508
[9]  Heinrich, L.A. (2019) Future Opportunities for Bio-Based Adhesives-Advantages beyond Renewability. Green Chemistry, 21, 1866-1888.
https://doi.org/10.1039/C8GC03746A
[10]  Haag, A.P., Maier, R.M., Combie, J. and Geesey, G.G. (2004) Bacterially Derived Biopolymers as Wood Adhesives. International Journal of Adhesion and Adhesives, 24, 495-502.
https://doi.org/10.1016/j.ijadhadh.2004.01.004
[11]  Kruger, L. and Lacourse, N. (1990) Starch Based Adhesives. In: Skeist, I., Ed., Handbook of Adhesives, Springer, Boston, 153-166.
https://doi.org/10.1007/978-1-4613-0671-9_8
[12]  Dhawale, P.V., Vineeth, S.K., Gadhave, R.V. and Mahanwar, P.A. (2021) Cellulose Stabilized Polyvinyl Acetate Emulsion: Review. Open Journal of Organic Polymer Materials, 11, 51-66.
https://doi.org/10.4236/ojopm.2021.112002
[13]  Luo, X. and Shuai, L. (2020) Lignin-Based Adhesives. In: Inamuddin, Boddula, R., Ahamed, M.I. and Asiri, A.M., Eds., Green Adhesives, John Wiley & Sons, Hoboken, 25-56.
https://doi.org/10.1002/9781119655053.ch2
[14]  Zhou, X. and Du, G. (2020) Applications of Tannin Resin Adhesives in the Wood Industry. In: Aires, A., Ed., Tannins-Structural Properties, Biological Properties and Current Knowledge, IntechOpen, London, 1-19.
https://doi.org/10.5772/intechopen.86424
[15]  Gadhave, R.V., Vineeth, S.K., Dhawale, P.V. and Gadekar, P.T. (2020) Effect of Boric Acid on Poly Vinyl Alcohol-Tannin Blend and Its Application as Water-Based Wood Adhesive. Designed Monomers and Polymers, 23, 188-196.
https://doi.org/10.1080/15685551.2020.1826124
[16]  Shybi, A.A., Varghese, S. and Thomas, S. (2021) Natural Rubber Latex-Based Adhesives: Role of Nanofillers. Journal of Adhesion Science and Technology, 35, 406-418.
https://doi.org/10.1080/01694243.2020.1806613
[17]  Zeng, Y., et al. (2021) Soy Protein-Based Adhesive with Superior Bonding Strength and Water Resistance by Designing Densely Crosslinking Networks. European Polymer Journal, 142, Article ID: 110128.
https://doi.org/10.1016/j.eurpolymj.2020.110128
[18]  Vnučec, D., Kutnar, A. and Goršek, A. (2017) Soy-Based Adhesives for Wood-Bonding—A Review. Journal of Adhesion Science and Technology, 31, 910-931.
https://doi.org/10.1080/01694243.2016.1237278
[19]  Lei, H., Du, G., Wu, Z., Xi, X. and Dong, Z. (2014) Cross-Linked Soy-Based Wood Adhesives for Plywood. International Journal of Adhesion and Adhesives, 50, 199-203.
https://doi.org/10.1016/j.ijadhadh.2014.01.026
[20]  Mitachi, S., Hagiwara, A., Murata, N., Kojima, D., Falco, G. and Mija, A. (2015) Eco-Friendly Optical Adhesives Based onVegetable Oil Thermosets. Journal of The Adhesion Society of Japan, 51, 279-285,
https://doi.org/10.11618/adhesion.51.279
[21]  Sulaiman, N.S., Hashim, R., Sulaiman, O., Nasir, M., Amini, M.H.M. and Hiziroglu, S. (2018) Partial Replacement of Urea-Formaldehyde with Modified Oil Palm Starch Based Adhesive to Fabricate Particleboard. International Journal of Adhesion and Adhesives, 84, 1-8.
https://doi.org/10.1016/j.ijadhadh.2018.02.002
[22]  Jang, Y., Huang, J. and Li, K. (2011) A New Formaldehyde-Free Wood Adhesive from Renewable Materials. International Journal of Adhesion and Adhesives, 31, 754-759.
https://doi.org/10.1016/j.ijadhadh.2011.07.003
[23]  Prasittisopin, L. and Li, K. (2010) A New Method of Making Particleboard with a Formaldehyde-Free Soy-Based Adhesive. Composites Part A: Applied Science and Manufacturing, 41, 1447-1453.
https://doi.org/10.1016/j.compositesa.2010.06.006
[24]  Pizzi, A. (2006) Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. Journal of Adhesion Science and Technology, 20, 829-846.
https://doi.org/10.1163/156856106777638635
[25]  Heinrich, L.A. (2019) Future Opportunities for Bio-Based Adhesives-Advantages beyond Renewability. Green Chemistry, 21, 1866-1888.
https://doi.org/10.1039/C8GC03746A
[26]  Klemm, D., Heublein, B., Fink, H.P. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
https://doi.org/10.1002/anie.200460587
[27]  Stenstad, P., Andresen, M., Tanem, B.S. and Stenius, P. (2008) Chemical Surface Modifications of Microfibrillated Cellulose. Cellulose, 15, 35-45.
https://doi.org/10.1007/s10570-007-9143-y
[28]  Kalia, S., et al. (2011) Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, Article ID: 837875.
https://doi.org/10.1155/2011/837875
[29]  Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941-3994.
https://doi.org/10.1039/c0cs00108b
[30]  Singh, H.K., Patil, T., Vineeth, S.K., Das, S., Pramanik, A. and Mhaske, S.T. (2019). Isolation of Microcrystalline Cellulose from Corn Stover with Emphasis on Its Constituents: Corn Cover and Corn Cob. Materials Today: Proceedings, 27, 589-594.
https://doi.org/10.1016/j.matpr.2019.12.065
[31]  Masoodia, R., El-Hajjar, R.F., Pillai, K.M. and Sabo, R. (2012) Mechanical Characterization of Cellulose Nanofiber and Bio-Based Epoxy Composite. Materials & Design, 36, 570-576.
https://doi.org/10.1016/j.matdes.2011.11.042
[32]  Jang, J.Y., Jeong, T.K., et al. (2012) Thermal Stability and Flammability of Coconut Fiber Reinforced Poly(Lactic Acid) Composites. Composites Part B: Engineering, 43, 2434-2438.
https://doi.org/10.1016/j.compositesb.2011.11.003
[33]  Canche-Escamilla, G., Rodriguez-Laviada, J., Cauich-Cupul, J.I., Mendizabal, E., et al. (2002) Flexural, Impact and Compressive Properties of a Rigid-Thermoplastic Matrix/Cellulose Fiber Reinforced Composites. Composites Part A: Applied Science and Manufacturing, 33, 539-549.
https://doi.org/10.1016/S1359-835X(01)00136-1
[34]  Sdrobis, A., Darie, R.N., et al. (2012) Low Density Polyethylene Composites Containing Cellulose Pulp Fibers. Composites Part B: Engineering, 43, 1873-1880.
https://doi.org/10.1016/j.compositesb.2012.01.064
[35]  Kowalczyk, M., Piorkowska, E., Kulpinski, P. and Pracella, M. (2011) Mechanical and Thermal Properties of PLA Composites with Cellulose Nanofibers and Standard Size Fibers. Composites Part A: Applied Science and Manufacturing, 42, 1509-1514.
https://doi.org/10.1016/j.compositesa.2011.07.003
[36]  Shi, Q.F., Zhou, C.G., Yue, Y.Y., et al. (2012) Mechanical Properties and in Vitro Degradation of Electrospun Bio-Nanocomposite Mats from PLA and Cellulose Nanocrystals. Carbohydrate Polymers, 90, 301-308.
https://doi.org/10.1016/j.carbpol.2012.05.042
[37]  Avella, M., Martuscelli, E. and Pascucci, B. (2012) Flexural Properties Loss of Unidirectional Epoxy/Fique Composites Immersed in Water and Alkaline Medium for Construction Application. Composites Part B: Engineering, 43, 3120-3130.
https://doi.org/10.1016/j.compositesb.2012.04.027
[38]  Houde, A.Y. and Stern, S.A. (1997) Solubility and Diffusivity of Light Gases in Ethyl Cellulose at Elevated Pressures Effects of Ethoxy Content. Journal of Membrane Science, 127, 171-183.
https://doi.org/10.1016/S0376-7388(96)00266-9
[39]  Kabir, M.M., Wang, H., et al. (2012) Mechanical Properties of Chemically-Treated Hemp Fibre Reinforced Sandwich Composites. Composites Part B: Engineering, 43, 159-169.
https://doi.org/10.1016/j.compositesb.2011.06.003
[40]  Lin, X., Chen, S.Y., Hu, W.L., et al. (2009) In Situ Synthesis of CdS Nanoparticles on Bacterial Cellulose Nanofibers. Carbohydrate Polymers, 76, 509-512.
https://doi.org/10.1016/j.carbpol.2008.11.014
[41]  Pandey, J.K., Takagi, H., et al. (2012) An Overview on the Cellulose Based Conducting Composites. Composites Part B: Engineering, 43, 2822-2866.
https://doi.org/10.1016/j.compositesb.2012.04.045
[42]  He, J., Kunitake, T. and Nakao, A. (2003) Facile in Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chemistry of Materials, 15, 4401-4406.
https://doi.org/10.1021/cm034720r
[43]  Khulbe, K.C., Matsuura, T. and Feng, C.Y. (2002) Study on Cellulose Acetate Membranes for Reverse Osmosis and Polyethersulfone Membranes for Ultrafiltration by Electron Spin Resonance Technique. Desalination, 148, 329-332.
https://doi.org/10.1016/S0011-9164(02)00725-7
[44]  Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z. and Zhou, Z. (2013) Effect of Surface Modification of Bamboo Cellulose Fibers on Mechanical Properties of Cellulose/Epoxy Composites. Composites Part B: Engineering, 51, 28-34.
https://doi.org/10.1016/j.compositesb.2013.02.031
[45]  Vineeth, S.K., Gadhave, R.V and Gadekar, P.T. (2019) Nanocellulose Applications in Wood Adhesives—Review. Open Journal of Polymer Chemistry, 9, 63-75.
https://doi.org/10.4236/ojpchem.2019.94006
[46]  Veigel, S., Rathke, J., Weigl, M. and Gindl-Altmutter, W. (2012) Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. Journal of Nanomaterials, 2012, Article ID: 158503.
https://doi.org/10.1155/2012/158503
[47]  Mahrdt, E., Pinkl, S., Schmidberger, C., van Herwijnen, H.W.G., Veigel, S. and Gindl-Altmutter, W. (2016) Effect of Addition of Microfibrillated Cellulose to Urea-Formaldehyde on Selected Adhesive Characteristics and Distribution in Particle Board. Cellulose, 23, 571-580.
https://doi.org/10.1007/s10570-015-0818-5
[48]  Tayeb, A.H., Amini, E., Ghasemi, S. and Tajvidi, M. (2018) Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules, 23, Article ID: 2684.
[49]  Grüneberger, F., Künniger, T., Zimmermann, T. and Arnold, M. (2014) Nanofibrillated Cellulose in Wood Coatings: Mechanical Properties of Free Composite Films. Journal of Materials Science, 49, 6437-6448.
https://doi.org/10.1007/s10853-014-8373-2
[50]  Dastjerdi, Z., Cranston, E.D. and Dubé, M.A. (2018) Pressure Sensitive Adhesive Property Modification Using Cellulose Nanocrystals. International Journal of Adhesion and Adhesives, 81, 36-42.
https://doi.org/10.1016/j.ijadhadh.2017.11.009
[51]  Veigel, S., Müller, U., Keckes, J., Obersriebnig, M. and Gindl-Altmutter, W. (2011) Cellulose Nanofibrils as Filler for Adhesives: Effect on Specific Fracture Energy of Solid Wood-Adhesive Bonds. Cellulose, 18, 1227-1237.
https://doi.org/10.1007/s10570-011-9576-1
[52]  Gindl-Altmutter, W. and Veigel, S. (2014) Nanocellulose-Modified Wood Adhesives. In: Oksman, K., Mathew, A.P., Bismarck, A., Rojas, O. and Sain, M., Eds., Handbook of Green Materials, World Scientific Publishing, Singapore, 253-264.
https://doi.org/10.1142/9789814566469_0031
[53]  Cataldi, A., Berglund, L., Deflorian, F. and Pegoretti, A. (2015) A Comparison between Micro- and Nanocellulose-Filled Composite Adhesives for Oil Paintings Restoration. Nanocomposites, 1, 195-203.
https://doi.org/10.1080/20550324.2015.1117239
[54]  Tajvidi, M., Gardner, D.J. and Bousfield, D.W. (2016) Cellulose Nanomaterials as Binders: Laminate and Particulate Systems. Journal of Renewable Materials, 4, 365-376.
https://doi.org/10.7569/JRM.2016.634103
[55]  Jiang, W., Haapala, A., Tomppo, L., Pakarinen, T., Sirviō, J.A. and Liimatainen, H. (2018) Effect of Cellulose Nanofibrils on the Bond Strength of Polyvinyl Acetate and Starch Adhesives for Wood. BioResources, 13, 2283-2292.
https://doi.org/10.15376/biores.13.2.2283-2292
[56]  López-Suevos, F., Eyholzer, C., Bordeanu, N. and Richter, K. (2010) DMA Analysis and Wood Bonding of PVAc Latex Reinforced with Cellulose Nanofibrils. Cellulose, 17, 387-398.
https://doi.org/10.1007/s10570-010-9396-8
[57]  Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O. and Wang, S. (2012) Nanocrystalline Cellulose (NCC): A Renewable Nano-Material for Polyvinyl Acetate (PVA) Adhesive. European Polymer Journal, 48, 1829-1837.
https://doi.org/10.1016/j.eurpolymj.2012.08.008
[58]  Cui, J., et al. (2015) Enhancement of Mechanical Strength of Particleboard Using Environmentally Friendly Pine (Pinus pinaster L.) Tannin Adhesives with Cellulose Nanofibers. Annals of Forest Science, 72, 27-32.
https://doi.org/10.1007/s13595-014-0392-2
[59]  Zhang, H., Zhang, J., Song, S., Wu, G. and Pu, J. (2011) Modified Nanocrystalline Cellulose from Two Kinds Emission and Bonding Strength of Urea-Fromaldehyde Resin Adhesive. BioResources, 6, 4430-4438.
[60]  Gao, Q., Li, J., Shi, S.Q., Liang, K. and Zhang, X. (2012) Soybean Meal-Based Adhesive Reinforced with Cellulose Nano-Whiskers. BioResources, 7, 5622-5633.
https://doi.org/10.15376/biores.7.4.5622-5633
[61]  Kojima, Y., et al. (2013) Binding Effect of Cellulose Nanofibers in Wood Flour Board. Journal of Wood Science, 59, 396-401.
https://doi.org/10.1007/s10086-013-1348-0
[62]  Kojima, Y., et al. (2014) Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers. Materials (Basel), 7, 6853-6864.
[63]  Ayrilmis, N., Lee, Y.K., Kwon, J.H., Han, T.H. and Kim, H.J. (2016) Formaldehyde Emission and VOCs from LVLs Produced with Three Grades of Urea-Formaldehyde Resin Modified with Nanocellulose. Building and Environment, 97, 82-87.
https://doi.org/10.1016/j.buildenv.2015.12.009
[64]  Via, B.K., Fasina, O. and Atta-Obeng, E. (2012) Effect of Microcrystalline Cellulose, Species, and Particle Size on Mechanical and Physical Properties of Particleboard. Wood and Fiber Science, 44, 227-235.
[65]  Hunt, J.F., Leng, W. and Tajvidi, M. (2017) Vertical Density Profile and Internal Bond Strength of Wet-Formed Particleboard Bonded with Cellulose Nanofibrils. Wood and Fiber Science, 49, 413-423.
[66]  Diop, C.I.K., Tajvidi, M., Bilodeau, M.A., Bousfield, D.W. and Hunt, J.F. (2017) Evaluation of the Incorporation of Lignocellulose Nanofibrils as Sustainable Adhesive Replacement in Medium Density Fiberboards. Industrial Crops and Products, 109, 27-36.
https://doi.org/10.1016/j.indcrop.2017.08.004
[67]  Amini, E., Tajvidi, M., Gardner, D.J. and Bousfield, D.W. (2017) Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources, 12, 4093-4110.
https://doi.org/10.15376/biores.12.2.4093-4110
[68]  Cheng, H.N., Kilgore, K., Ford, C., Fortier, C., Dowd, M.K. and He, Z. (2019) Cottonseed Protein-Based Wood Adhesive Reinforced with Nanocellulose. Journal of Adhesion Science and Technology, 33, 1357-1368.
https://doi.org/10.1080/01694243.2019.1596650
[69]  Oh, M., Ma, Q., Simsek, S., Bajwa, D. and Jiang, L. (2019) Comparative Study of Zein- and Gluten-Based Wood Adhesives Containing Cellulose Nano Fibers and Crosslinking Agent for Improved Bond Strength. International Journal of Adhesion and Adhesives, 92, 44-57.
https://doi.org/10.1016/j.ijadhadh.2019.04.004
[70]  Zhang, H., Liu, P., Musa, S., Mai, C. and Zhang, K. (2019) Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. ACS Sustainable Chemistry & Engineering, 7, 10452-10459.
https://doi.org/10.1021/acssuschemeng.9b00801
[71]  Kwon, J.H., Lee, S.H., Ayrilmis, N. and Han, T.H. (2015) Tensile Shear Strength of Wood Bonded with Urea-Formaldehyde with Different Amounts of Microfibrillated Cellulose. International Journal of Adhesion and Adhesives, 60, 88-91.
[72]  Chen, H., Nair, S.S., Chauhan, P. and Yan, N. (2019) Lignin Containing Cellulose Nanofibril Application in pMDI Wood Adhesives for Drastically Improved Gap-Filling Properties with Robust Bondline Interfaces. Chemical Engineering Journal, 360, 393-401.
https://doi.org/10.1016/j.cej.2018.11.222
[73]  Salon, M.C.B., Bayle, P.A., Abdelmouleh, M., Boufi, S. and Belgacem, M.N. (2008) Kinetics of Hydrolysis and Self-Condensation Reaction of Silanes by NMR Spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312, 83-91.
https://doi.org/10.1016/j.colsurfa.2007.06.028
[74]  Donath, S., Militz, H. and Mai, C. (2006) Creating Water-Repellent Effects on Wood Bytreatment with Silanes. Holzforschung, 60, 40-46.
[75]  Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M.N. and Gandini, A. (2002) Interaction Ofsilane Coupling Agents with Cellulose. Langmuir, 18, 3203-3208.
https://doi.org/10.1021/la011657g
[76]  Averous, L. (2009) Biodegradable Polymer Blends and Composites from Renewable Resources. Macromolecular Chemistry and Physics, 210, 890.
https://doi.org/10.1002/macp.200900141
[77]  Bledzki, A.K., Reihmane, S. and Gassan, J. (1996) Properties and Modification Methods for Vegetable Fibers for Natural Fiber Composites. Journal of Applied Polymer Science, 59, 1329-1336.
https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
[78]  Hornsby, P.R., Hinrichsen, E. and Tarverdi, K. (1997) Preparation and Properties of Polypropylene Composites Reinforced with Wheat and Flax Straw Fibres: Part II Analysis of Composite Microstructure and Mechanical Properties. Journal of Materials Science, 32, 1009-1015.
https://doi.org/10.1023/A:1018578322498
[79]  Oksman, K., Wallstrom, L., Berglund, L.A. and Filho, R.D.T. (2002) Morphology and Mechanical Properties of Unidirectional Sisal-Epoxy Composites. Journal of Applied Polymer Science, 84, 2358-2365.
https://doi.org/10.1002/app.10475
[80]  Saheb, D.N. and Jog, J.P. (1999) Natural Fiber Polymer Composites: A Review. Advances in Polymer Technology, 18, 351-363.
https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
[81]  Georgopoulos, S.T., Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G. and Koukios, E.G. (2005) Thermoplastic Polymers Reinforced with Fibrous Agricultural Residues. Polymer Degradation and Stability, 90, 303-312.
https://doi.org/10.1016/j.polymdegradstab.2005.02.020
[82]  Tanpichai, S. and Oksman, K. (2016) Cross-Linked Nanocomposite Hydrogels Based on Cellulose Nanocrystals and PVA: Mechanical Properties and Creep Recovery. Composites Part A: Applied Science and Manufacturing, 88, 226-233.
https://doi.org/10.1016/j.compositesa.2016.06.002
[83]  Tanpichai, S. and Oksman, K. (2018) Crosslinked Poly(Vinyl Alcohol) Composite Films with Cellulose Nanocrystals: Mechanical and Thermal Properties. Journal of Applied Polymer Science, 135, Article ID: 45710.
https://doi.org/10.1002/app.45710
[84]  Sirviō, J.A., Honkaniemi, S., Visanko, M. and Liimatainen, H. (2015) Composite Films of Poly(Vinyl Alcohol) and Bifunctional Cross-Linking Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 7, 19691-19699.
https://doi.org/10.1021/acsami.5b04879
[85]  Spoljaric, S., Salminen, A., Luong, N.D. and Seppälä, J. (2014) Stable, Self-Healing Hydrogels from Nanofibrillated Cellulose, Poly(Vinyl Alcohol) and Borax via Reversible Crosslinking. European Polymer Journal, 56, 105-117.
https://doi.org/10.1016/j.eurpolymj.2014.03.009
[86]  Pramanik, R., Ganivada, B., Ram, F., Shanmuganathan, K. and Arockiarajan, A. (2019) Influence of Nanocellulose on Mechanics and Morphology of Polyvinyl Alcohol Xerogels. The Journal of the Mechanical Behavior of Biomedical Materials, 90, 275-283.
https://doi.org/10.1016/j.jmbbm.2018.10.024
[87]  Song, T., Tanpichai, S. and Oksman, K. (2016) Cross-Linked Polyvinyl Alcohol (PVA) Foams Reinforced with Cellulose Nanocrystals (CNCs). Cellulose, 23, 1925-1938.
https://doi.org/10.1007/s10570-016-0925-y
[88]  Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M.N. and Gandini, A. (2002) Interaction of Silane Coupling Agents with Cellulose. Langmuir, 18, 3203-3208.
https://doi.org/10.1021/la011657g
[89]  Salas, C., Nypelö, T., Rodriguez-Abreu, C., Carrillo, C. and Rojas, O.J. (2014) Nanocellulose Properties and Applications in Colloids and Interfaces. Current Opinion in Colloid & Interface Science, 19, 383-396.
https://doi.org/10.1016/j.cocis.2014.10.003
[90]  Hajlane, A. (2014) Development of Hierarchical Cellulosic Reinforcement for Polymer Composites. Licentiate Thesis, Luleå Tekniska Universitet, Luleå.
[91]  Eyley, S. and Thielemans, W. (2014) Surface Modification of Cellulose Nanocrystals. Nanoscale, 6, 7764-7779.
https://doi.org/10.1039/C4NR01756K
[92]  Kalia, S., Boufi, S., Celli, A. and Kango, S. (2014) Nanofibrillated Cellulose: Surface Modification and Potential Applications. Colloid and Polymer Science, 292, 5-31.
https://doi.org/10.1007/s00396-013-3112-9
[93]  Mohd, N.H., Ismail, N.F.H., Zahari, J.I., Wan Fathilah, W.F., Kargarzadeh, H., Ramli, S. and Othaman, R. (2016) Effect of Aminosilane Modification on Nanocrystalline Cellulose Properties. Journal of Nanomaterials, 2016, Article ID: 4804271.
https://doi.org/10.1155/2016/4804271
[94]  Xie, K., Yu, Y. and Shi, Y. (2009) Synthesis and Characterization of Cellulose/Silica Hybrid Materials with Chemical Crosslinking. Carbohydrate Polymers, 78, 799-805.
https://doi.org/10.1016/j.carbpol.2009.06.019
[95]  Mabrouk, A.B., Kaddami, H., Magnin, A., Belgacem, M.N., Dufresne, A. and Boufi, S. (2011) Preparation of Nanocomposite Dispersions Based on Cellulose Whiskers and Acrylic Copolymer by Miniemulsion Polymerization: Effect of the Silane Content. Polymer Engineering & Science, 51, 62-70.
https://doi.org/10.1002/pen.21778
[96]  Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. and Mai, C. (2010) Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Composites Part A: Applied Science and Manufacturing, 41, 806-819.
https://doi.org/10.1016/j.compositesa.2010.03.005
[97]  De Oliveira Taipina, M., Ferrarezi, M.M.F., Yoshida, I.V.P. and Gonçalves, M. (2013) Surface Modification of Cotton Nanocrystals with a Silane Agent. Cellulose, 20, 217-226.
https://doi.org/10.1007/s10570-012-9820-3
[98]  Low, I.M., McGrath, M., et al. (2007) Mechanical and Fracture Properties of Cellulose Fibre-Reinforced Epoxy Laminates. Composites Part A: Applied Science and Manufacturing, 38, 963-974.
https://doi.org/10.1016/j.compositesa.2006.06.019
[99]  Hsieh, K.H., Han, J.L., et al. (2001) Graft Interpenetrating Polymer Networks of Urethane Modified Bismaleimide and Epoxy (I): Mechanical Behavior and Morphology. Polymer, 42, 2912-2917.
https://doi.org/10.1016/S0032-3861(00)00641-8
[100]  Alamri, H. and Low, I.M. (2012) Mechanical Properties and Water Absorption Behaviour of Recycled Cellulose Fibre Reinforced Epoxy Composites. Polymer Testing, 31, 620-628.
https://doi.org/10.1016/j.polymertesting.2012.04.002
[101]  Shih, Y.F. (2007) Mechanical and Thermal Properties of Waste Water Bamboo Husk Fiber Reinforced Epoxy Composites. Materials Science and Engineering: A, 445-446, 289-295.
https://doi.org/10.1016/j.msea.2006.09.032
[102]  Mohamed, H.G., Mostafa, A.E., Kazuya, O. and Toru, F. (2010) Effect of Microfibrillated Cellulose on Mechanical Properties of Plain-Woven CFRP Reinforced Epoxy. Composite Structures, 92, 1999-2006.
https://doi.org/10.1016/j.compstruct.2009.12.009
[103]  Reddy, K.O., Maheswari, C.U., et al. (2013) Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers. Composites Part B: Engineering, 44, 433-438.
https://doi.org/10.1016/j.compositesb.2012.04.075
[104]  Mishra, S., Misra, M., Tripathy, S.S., et al. (2002) The Influence of Chemical Surface Modification on the Performance of Sisal-Polyester Biocomposites. Polymer Composites, 23, 164-170.
https://doi.org/10.1002/pc.10422
[105]  Jarukumjorn, K. and Suppakarn, N. (2009) Effect of Glass Fiber Hybridization on Properties of Sisal Fiber-Polypropylene Composites. Composites Part B: Engineering, 40, 623-627.
https://doi.org/10.1016/j.compositesb.2009.04.007
[106]  Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z. and Zhou, Z. (2013) Effect of Surface Modification of Bamboo Cellulose Fibers on Mechanical Properties of Cellulose/Epoxy Composites. Composites Part B: Engineering, 51, 28-34.
https://doi.org/10.1016/j.compositesb.2013.02.031
[107]  Abdelmouleh, M., Boufi, S., Belgacem, M.N., Dufresne, A. and Gandini, A. (2005) Modification of Cellulose Fibers with Functionalized Silanes: Effect of the Fiber Treatment on the Mechanical Performances of Cellulose-Thermoset Composites. Journal of Applied Polymer Science, 98, 974-984.
https://doi.org/10.1002/app.22133
[108]  Gao, T.M., Huang, M.F., Li, P.W., Han, Z.P., Xie, R.H. and Chen, H.L. (2012) Preparation and Characterization Nano-Cellulose and its Surface Modification by Silane Coupling Agent. Applied Mechanics and Materials, 217-219, 260-263.
https://doi.org/10.4028/www.scientific.net/AMM.217-219.260
[109]  Thakur, M.K., Gupta, R.K. and Thakur, V.K. (2014) Surface Modification of Cellulose Using Silane Coupling Agent. Carbohydrate Polymers, 111, 849-855.
https://doi.org/10.1016/j.carbpol.2014.05.041
[110]  Sanaeepur, H., Kargari, A. and Nasernejad, B. (2014) Aminosilane Functionalization of a Nanoporous Y-Type Zeolite for Application in a Cellulose Acetate Based Mixed Matrix Membrane for CO2 Separation. RSC Advances, 4, 63966-63976,
https://doi.org/10.1039/C4RA08783F
[111]  Lu, J., Askeland, P. and Drzal, L.T. (2008) Surface Modification of Microfibrillated Cellulose for Epoxy Composite Applications. Polymer, 49, 1285-1296.
https://doi.org/10.1016/j.polymer.2008.01.028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133