全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Confidence Intervals for the Binomial Proportion: A Comparison of Four Methods

DOI: 10.4236/ojs.2021.115047, PP. 806-816

Keywords: Binomial Distribution, Confidence Interval, Coverage Probability, Expected Length, Relative Likelihood Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents four methods of constructing the confidence interval for the proportion p of the binomial distribution. Evidence in the literature indicates the standard Wald confidence interval for the binomial proportion is inaccurate, especially for extreme values of p. Even for moderately large sample sizes, the coverage probabilities of the Wald confidence interval prove to be erratic for extreme values of p. Three alternative confidence intervals, namely, Wilson confidence interval, Clopper-Pearson interval, and likelihood interval, are compared to the Wald confidence interval on the basis of coverage probability and expected length by means of simulation.

References

[1]  Matiri, G., Nyongesa, K. and Islam, A. (2017) Sequentially Selecting between Two Experiment for Optimal Estimation of a Trait with Misclassification. American Journal of Theoretical and Applied Statistics, 6, 79-89.
https://doi.org/10.11648/j.ajtas.20170602.12
[2]  Vollset, S.E. (1993) Confidence Intervals for a Binomial Proportion. Statistics in Medicine, 12, 809-824.
https://doi.org/10.1002/sim.4780120902
[3]  Agresti, A. and Coull, B.A. (1998) Approximate Is Better Than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52, 119-126.
https://doi.org/10.1080/00031305.1998.10480550
[4]  Newcombe, R.G. (1998) Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods. Statistics in Medicine, 17, 857-872.
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3C857::AID-SIM777%3E3.0.CO;2-E
[5]  Brown, L.D., Cai, T.T. and DasGupta, A. (2001) Interval Estimation for a Binomial Proportion. Statistical Science, 16, 101-117.
https://doi.org/10.1214/ss/1009213286
[6]  Brown, L.D., Cai, T.T. and DasGupta, A. (2002) Confidence Intervals for a Binomial Proportion and Asymptotic Expansions. Annals of Statistics, 30, 160-201.
https://doi.org/10.1214/aos/1015362189
[7]  Panagiotis, M. and Konstantinos, Z. (2008) Interval Estimation for a Binomial Proportion. A Bootstrap Approach. Journal of Statistical Computation and Simulation, 78, 1251-1265.
https://doi.org/10.1080/00949650701749356
[8]  Kalbfleisch, J.G. (1985) Probability and Statistical Inference, Volume 2: Statistical Inference. 2nd Edition, Springer Verlag, New York.
https://doi.org/10.1007/978-1-4612-5136-1
[9]  Clopper, C.J. and Pearson, E.S. (1934) The Use of Confidence Intervals or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika, 26, 404-413.
https://doi.org/10.1093/biomet/26.4.404
[10]  Wilson, E.B. (1927) Probable Inference, the Law of Succession, and Statistical Inference. Journal of American Statistical Association, 22, 209-212.
https://doi.org/10.1080/01621459.1927.10502953
[11]  Pritz, M.B., Zhou, X.H. and Brizendine, E.J. (1996) Hyperdynamic Therapy for Cerebral Vasospam: A Meta-Analysis of 14 Studies. J. Neurovasc. Dis., 1, 6-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133