全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Insightful Understanding of the Role of the Mechanical Properties in Defining the Reliability of All-Ceramic Dental Restorations: A Review

DOI: 10.4236/jbnb.2021.124006, PP. 57-78

Keywords: Mechanical Properties, Fracture Mechanics, All-Ceramic Dental Restorations, Microstructural Features, Microcracks

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the last two decades, restorative dentistry has been witnessing an increased acceptance of the use of the well-known all-ceramic materials for the fabrication of single dental restorations, such as inlays, onlays, crowns, anterior and posterior fixed partial dentures (PFPDs). These restorations certainly offer the potential for better biocompatibility coupled with superior aesthetic qualities, especially when compared with the conventional prostheses made from porcelain that is fused with metal ceramic restorations. However, brittleness and extreme sensitivity of all-ceramic materials to micro-like defects or cracks that are inherently present, or may grow, in their microstructure during different laboratory fabrication steps, during necessary clinical adjustments, or from post-placement chewing activity, remain major shortcomings of these dental restorations. In fact, many researchers are of the opinion that the improved mechanical properties can significantly improve the lifetime of all-ceramic restorations and result in enhanced reliability. Therefore, efforts of researchers, as well as manufacturers, have been directed towards the improvement of the mechanical properties in order to overcome such limitations. This article reviews the characterization of the most important mechanical properties that can delineate the behavior of all-ceramic dental materials upon loading. These include fracture mechanics, the brittle nature of ceramics, the relationship between microstructural features and fracture behavior, sources of cracks and flaws that may initiate a fracture and the effect of different fabrication procedures and/or clinical adjustments on the mechanical behavior of dental ceramics are also reviewed and discussed.

References

[1]  Ananth, H., Kundapur, V., Mohammed, H.S., Anand, M., Amarnath, G.S. and Mankar, S. (2015) A Review on Biomaterials in Dental Implantology. International Journal of Biomedical Science, 11, 113-120.
[2]  Chu, S. and Ahmad, I. (2005) A Historical Perspective of Synthetic Ceramic and Traditional Feldspathic Porcelain. Practical Procedures and Aesthetic Dentistry, 17, 593-598.
[3]  Anusavice, K.J., Phillips, R.W., Shen, C. and Rawls, H.R. (2013) Phillips’ Science of Dental Materials. 18th Edition, Elsevier/Saunders, St. Louis.
[4]  Craig, R.G. and Powers, J.M. (2018) Restorative Dental Materials. 14th Edition, Mosby, St. Louis.
[5]  Hamza, T.A. and Sherif, R.M. (2019) Fracture Resistance of Monolithic Glass-Ceramics versus Bilayered Zirconia-Based Restorations. Journal of Prosthodontics, 28, e259-e264.
https://doi.org/10.1111/jopr.12684
[6]  Zarone, F., Di Mauro, M.I., Ausiello, P., Ruggiero, G. and Sorrentino, R. (2019) Current Status on Lithium Disilicate and Zirconia: A Narrative Review. BMC Oral Health, 4, Article No. 134.
https://doi.org/10.1186/s12903-019-0838-x
[7]  Zhang, Y. and Kelly, J.R. (2017) Dental Ceramics for Restoration and Metal Veneering. Dental Clinics of North America, 4, 797-819.
https://doi.org/10.1016/j.cden.2017.06.005
[8]  Stona, D., Burnett, L.H., Mota, E.G. and Spohr, A.M. (2015) Fracture Resistance of Computer-Aided Design and Computer-Aided Manufacturing Ceramic Crowns Cemented on Solid Abutments. The Journal of the American Dental Association, 146, 501-507.
https://doi.org/10.1016/j.adaj.2015.02.012
[9]  Daou, E.E. (2015) Esthetic Prosthetic Restorations: Reliability and Effects on Antagonist Dentition. The Open Dentistry Journal, 31, 473-481.
https://doi.org/10.2174/1874210601509010473
[10]  Belkhode, V.M., Nimonkar, S.V., Godbole, S.R., Nimonkar, P., Sathe, S. and Borle, A. (2019) Evaluation of the Effect of Different Surface Treatments on the Bond Strength of Non-Precious Alloy-Ceramic Interface: An SEM Study. Journal of Dental Research Dental Clinics Dental Prospects, 13, 200-207.
https://doi.org/10.15171/joddd.2019.031
[11]  Eliaz, N. (2019) Corrosion of Metallic Biomaterials: A Review. Materials (Basel), 28, 407.
https://doi.org/10.3390/ma12030407
[12]  Tezulas, E., Yildiz, C., Kucuk, C. and Kahramanoglu, E. (2019) Current Status of Zirconia-Based All-Ceramic Restorations Fabricated by the Digital Veneering Technique: A Comprehensive Review. International Journal of Computerized Dentistry, 22, 217-230.
[13]  Miyazaki, T. and Hotta, Y. (2011) CAD/CAM Systems Available for the Fabrication of Crown and Bridge Restorations. Australian Dental Journal, 56, 97-106.
https://doi.org/10.1111/j.1834-7819.2010.01300.x
[14]  Rashid, H., Sheikh, Z., Misbahuddin, S., Kazmi, M.R., Qureshi, S. and Uddin, M.Z. (2016) Advancements in All-Ceramics for Dental Restorations and Their Effect on the Wear of Opposing Dentition. European Journal of Dentistry, 10, 583-588.
https://doi.org/10.4103/1305-7456.195170
[15]  Tian, T., Tsoi, J.K., Matinlinna, J.P. and Burrow, M.F. (2014) Aspects of Bonding between Resin Luting Cements and Glass Ceramic Materials. Dental Materials, 30, 147-162.
https://doi.org/10.1016/j.dental.2014.01.017
[16]  Warreth, A. and Elkareimi, Y. (2020) All-Ceramic Restorations: A Review of the Literature. The Saudi Dental Journal, 32, 365-372.
https://doi.org/10.1016/j.sdentj.2020.05.004
[17]  Albakry, M., Guazzato, M. and Swain, M.V. (2003) Fracture Toughness and Hardness Evaluation of Three Pressable All-Ceramic Dental Materials. Journal of Dentistry, 31, 181-188.
https://doi.org/10.1016/S0300-5712(03)00025-3
[18]  Guazzato, M., Albakry, M. and Swain, M.V. and Ironside, J. (2002) Mechanical Properties of In-Ceram Alumina and In-Ceram Zirconia. International Journal of Prosthodontics, 15, 339-346.
[19]  Ameh, E.S. (2020) Consolidated Derivation of Fracture Mechanics Parameters and Fatigue Theoretical Evolution Models: Basic Review. SN Applied Sciences, 2, Article No. 1800.
https://doi.org/10.1007/s42452-020-03563-8
[20]  Anderson, T.L. (2017) Fracture Mechanics: Fundamentals and Applications. Fourth Edition, CRC Press, Boca Raton.
[21]  Brochard, L., Souguir, S. and Sab, K. (2019) Scaling of Brittle Failure: Strength Versus Toughness. International Journal of Fracture, 210, 153-166.
https://doi.org/10.1007/s10704-018-0268-9
[22]  Bottlang, M., Schemitsch, C.E., Nauth, A., Routt, M., Egol, K.A., Cook, G.E. and Schemitsch, E.H. (2015) Biomechanical Concepts for Fracture Fixation. Journal of Orthopaedic Trauma, 12, S28-S33.
https://doi.org/10.1097/BOT.0000000000000467
[23]  Cotterell, B. and Mai, Y.W. (1996) Fracture Mechanics of Cementitious Materials: Glasgow G64 2NZ. Blackie Academic & Professional, London.
https://doi.org/10.1201/9781482269338
[24]  Stawarczyk, B., Liebermann, A., Rosentritt, M., Povel, H., Eichberger, M. and Lümkemann, N. (2020) Flexural Strength and Fracture Toughness of Two Different Lithium Disilicate Ceramics. Dental Materials Journal, 31, 302-308.
https://doi.org/10.4012/dmj.2019-045
[25]  Green, D.J. (1998) An Introduction to the Mechanical Properties of Ceramics. University Press, Cambridge.
https://doi.org/10.1017/CBO9780511623103
[26]  Wachtman, J.R. (1996) Mechanical Properties of Ceramics. John Wiley & Sons, New York.
[27]  O’Brien, W.J. (2002) Dental Materials and Their Selection. 3rd Edition, Quintessence Publishing Co. Inc., Chicago.
[28]  Ashby, M.F. and Jones D.R.H. (1999) Engineering Materials 2. An Introduction to Microstructures, Processing & Design. Butterworth Heinemann, Oxford.
[29]  Rekow, E.D., Silva, N.R., Coelho, P.G., Zhang, Y., Guess, P. and Thompson, V.P. (2011) Performance of Dental Ceramics: Challenges for Improvements. Journal of Dental Research, 90, 937-952.
https://doi.org/10.1177/0022034510391795
[30]  Gonzaga, C.C., Cesar, P.F., Miranda, W.G. and Yoshimura, H.N. (2011) Slow Crack Growth and Reliability of Dental Ceramics. Dental Materials, 27, 394-406.
https://doi.org/10.1016/j.dental.2010.10.025
[31]  Li, J., Huang, Q. and Ren, X. (2013) Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials. Materials (Basel), 6, 3241-3253.
https://doi.org/10.3390/ma6083241
[32]  Sanchez, L.E.A., Oliveira, J.F.G. and Coelho, R.T. (2005) Detection of Cracks in Scratching Tests in Ceramic Materials through Acoustic Emission. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219, 685-693.
https://doi.org/10.1243/095440505X32616
[33]  Wang, L., D’Alpino, P.H., Lopes, L.G. and Pereira, J.C. (2003) Mechanical Properties of Dental Restorative Materials: Relative Contribution of Laboratory Tests. Journal of Applied Oral Science, 11, 162-167.
https://doi.org/10.1590/S1678-77572003000300002
[34]  Hallmann, L., Ulmer, P. and Kern, M. (2018) Effect of Microstructure on the Mechanical Properties of Lithium Disilicate Glass-Ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 82, 355-370.
https://doi.org/10.1016/j.jmbbm.2018.02.032
[35]  Finnis, M. (2004) Interatomic Forces in Materials. Progress in Materials Science, 49, 1-18.
https://doi.org/10.1016/S0079-6425(03)00018-5
[36]  Murugan, S.S. (2020) Mechanical Properties of Materials: Definition, Testing and Application. International Journal of Modern Studies in Mechanical Engineering, 6, 28-38.
[37]  Schlenker, B.R. (1986) Introduction to Materials Science. SI Edition, Jacaranda Press, Sydney.
[38]  Anusavice, K.J. (1996) Philip’s Science of Dental Materials. 10th Edition, WB Saunders Company, Philadelphia.
[39]  Schaffer, J.P., Saxena, A., Antolovich, S.D., Sanders, J. and Warner, S.P. (1995) The Science and Design of Engineering Materials. Irwin, Inc., Chicago.
[40]  Baino, F. and Fiume, E. (2109) Elastic Mechanical Properties of 45S5-Based Bioactive Glass-Ceramic Scaffolds. Materials (Basel), 4, 3244.
https://doi.org/10.3390/ma12193244
[41]  Kolednik, O., Predan, J., Fischer, F.D. and Fratzl, P. (2014) Improvements of Strength and Fracture Resistance by Spatial Material Property Variations. Acta Materialia, 68, 279-294.
https://doi.org/10.1016/j.actamat.2014.01.034
[42]  Scherrer, S.S. and de Rijk, W.G. (1993) The Fracture Strength of All-Ceramic Crowns on Supporting Structures with Different Elastic Moduli. International Journal of Prosthodontics, 6, 462-467.
[43]  Alshabib, A., Silikas, N. and Watts, D.C. (2019) Hardness and Fracture Toughness of Resin-Composite Materials with and without Fibers. Dental Materials, 35, 1194-1203.
https://doi.org/10.1016/j.dental.2019.05.017
[44]  Malzbender, J. (2003) Comments on Hardness Definitions. Journal of the European Ceramic Society, 23, 1355-1359.
https://doi.org/10.1016/S0955-2219(02)00354-0
[45]  Elmaria, A., Goldstein, G., Vijayaraghavan, T., Legeros, R.Z. and Hittelman, E.L. (2006) An Evaluation of Wear When Enamel Is Opposed by Various Ceramic Materials and Gold. Journal of Prosthetic Dentistry, 96, 345-353.
https://doi.org/10.1016/j.prosdent.2006.09.002
[46]  Olivera, A.B., Matson, E. and Marques, M.M. (2006) The Effect of Glazed and Polished Ceramics on Human Enamel Wear. International Journal of Prosthodontics, 19, 547-548.
[47]  Schuh, C., Kinast, E.J., Mezzomo, E. and Kapczinski, M.P. (2005) Effect of Glazed and Polished Surface Finishes on the Friction Coefficient of Two Low-Fusing Ceramics. Journal of Prosthetic Dentistry, 93, 245-252.
https://doi.org/10.1016/j.prosdent.2004.12.010
[48]  Albakry, M., Guazzato, M. and Swain, M.V. (2003) Biaxial Flexural Strength, Elastic Moduli, and X-Ray Diffraction Characterization of Three Pressable All-Ceramic Materials. Journal of Prosthetic Dentistry, 89, 374-380.
https://doi.org/10.1067/mpr.2003.42
[49]  Sen, N. and Us, Y.O. (2018) Mechanical and Optical Properties of Monolithic CAD-CAM Restorative Materials. Journal of Prosthetic Dentistry, 119, 593-599.
https://doi.org/10.1016/j.prosdent.2017.06.012
[50]  Gorman, C.M., Horgan, K., Dollard, R.P. and Stanton, K.T. (2014) Effects of Repeated Processing on the Strength and Microstructure of a Heat-Pressed Dental Ceramic. Journal of Prosthetic Dentistry, 112, 1370-1376.
https://doi.org/10.1016/j.prosdent.2014.06.015
[51]  Taskonak, B., Griggs, J.A., Mecholsky, J.J. and Yan, J.H. (2008) Analysis of Subcritical Crack Growth in Dental Ceramics Using Fracture Mechanics and Fractography. Dental Materials, 24, 700-707.
https://doi.org/10.1016/j.dental.2007.08.001
[52]  Turon-Vinas, M. and Anglada, M. (2018) Strength and Fracture Toughness of Zirconia Dental Ceramics. Dental Materials, 34, 365-375.
https://doi.org/10.1016/j.dental.2017.12.007
[53]  Evans, A.G. (1982) Structural Reliability: A Processing-Dependent Phenomenon. Journal of the American Ceramic Society, 65, 127-137.
https://doi.org/10.1111/j.1151-2916.1982.tb10380.x
[54]  Ban, S. and Anusavice, K.J. (1990) Influence of Test Method on Failure Stress of Brittle Dental Materials. Journal of Dental Research, 69, 1791-1799.
https://doi.org/10.1177/00220345900690120201
[55]  Cesca, R., Colombo, V., Ernst, B., Gallo, L.M. and Özcan, M. (2020) Tensile Strength and Failure Types of Direct and Indirect Resin Composite Copings for Perio-Overdentures Luted Using Different Adhesive Cementation Modalities. Materials (Basel), 10, 3517.
https://doi.org/10.3390/ma13163517
[56]  Leguillon, D., Martin, E. and Lafarie-Frenot, M. (2015) Flexural vs. Tensile Strength in Brittle Materials. Comptes Rendus Mecanique, 343, 275-281.
https://doi.org/10.1016/j.crme.2015.02.003
[57]  Klein, C.A. (2009) Characteristic Strength, Weibull Modulus, and Failure Probability of Fused Silica Glass. Optical Engineering, 48, Article ID: 113401.
https://doi.org/10.1117/1.3265716
[58]  Afferrante, L., Ciavarell, M. and Valenza, E. (2006) Is Weibull’s Modulus Really a Material Constant? Example Case with Interacting Collinear Cracks. International Journal of Solids and Structures, 43, 5147-5157.
https://doi.org/10.1016/j.ijsolstr.2005.08.002
[59]  Ashby, M.F. and Jones, D.R.H. (2006) Engineering Materials 2: An Introduction to Microstructure, Processing and Design. 3rd Edition, Pergamon Press, Oxford.
[60]  Miura, D., Ishida, Y., Miyasaka, T., Aoki, H. and Shinya, A. (2020) Reliability of Different Bending Test Methods for Dental Press Ceramics. Materials (Basel), 13, 5162.
https://doi.org/10.3390/ma13225162
[61]  Weibull, W. (1951) A Statistical Distribution Function of Wide Application. Journal of Applied Mechanics, 9, 293-297.
https://doi.org/10.1115/1.4010337
[62]  Guazzato, M., Albakry, M., Ringer, S.P. and Swain, M.V. (2004) Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part I. Pressable and Alumina Glass-Infiltrated Ceramics. Dental Materials, 20, 441-448.
https://doi.org/10.1016/j.dental.2003.05.003
[63]  Abdulhameed, N., Angus, B., Wanamaker, J. and Mecholsky, J.J. (2020) Quantitative Fractography as a Novel Approach to Measure Fracture Toughness of Direct Resin Composites. Journal of the Mechanical Behavior of Biomedical Materials, 109, Article ID: 103857.
https://doi.org/10.1016/j.jmbbm.2020.103857
[64]  Belli, R., Lohbauer, U., Goetz-Neunhoeffer, F. and Hurle, K. (2019) Crack-Healing during Two-Stage Crystallization of Biomedical Lithium (di) Silicate Glass-Ceramics. Dental Materials, 35, 1130-1145.
https://doi.org/10.1016/j.dental.2019.05.013
[65]  Oh, W.S., Park, J.M. and Anusavice, K.J. (2003) Fracture Toughness (KIC) of a Hot-Pressed Core Ceramic Based on Fractographic Analysis of Fractured Ceramic FPDs. International Journal of Prosthodontics, 16, 135-140.
[66]  Bonilla, E.D., Yashar, M. and Caputo, A.A. (2003) Fracture Toughness of Nine Flowable Resin Composites. Journal of Prosthetic Dentistry, 89, 261-267.
https://doi.org/10.1067/mpr.2003.33
[67]  Albakry, M., Guazzato, M. and Swain, M.V. (2004) Influence of Hot Pressing on the Microstructure and Fracture Toughness of Two Pressable Dental Glass-Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 15, 99-107.
https://doi.org/10.1002/jbm.b.30066
[68]  Urapeopn, S. and Wiriyapak, D. (2017) Effect of Resin Infusion on Fracture Toughness of Dental Veneering Ceramic. Mahidol Dental Journal, 37, 1-6.
[69]  Silva, L.H.D., Lima, E., Miranda, R.B.P., Favero, S.S., Lohbauer, U. and Cesar, P.F. (2107) Dental Ceramics: A Review of New Materials and Processing Methods. Brazilian Oral Research, 31, Ariticle No. e58.
https://doi.org/10.1590/1807-3107bor-2017.vol31.0058
[70]  Evans, A.G. (1990) Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society, 73, 187-206.
https://doi.org/10.1111/j.1151-2916.1990.tb06493.x
[71]  Swain, M.V. (1989) Toughening Mechanisms for Ceramics. Materials Forum, 13, 237-253.
https://doi.org/10.1016/B978-0-08-034341-9.50261-8
[72]  Seghi, R.R. and Sorensen, J.A. (1995) Relative Flexural Strength of Six New Ceramic Materials. International Journal of Prosthodontics, 8, 239-246.
[73]  Borba, M., de Araújo, M.D., Fukushima, K.A., Yoshimura, H.N., Cesar, P.F., Griggs, J.A. and Della Bona, A. (2011) Effect of the Microstructure on the Lifetime of Dental Ceramics. Dental Materials, 27, 710-721.
https://doi.org/10.1016/j.dental.2011.04.003
[74]  Guazzato, M., Albakry, M., Ringer, S.P. and Swain, M.V. (2004) Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part II. Zirconia-Based Dental Ceramics. Dental Materials, 20, 449-456.
https://doi.org/10.1016/j.dental.2003.05.002
[75]  Stawarczyk, B., Keul, C., Eichberger, M., Figge, D., Edelhoff, D. and Lümkemann, N. (2017) Three Generations of Zirconia: From Veneered to Monolithic. Part I. Quintessence International, 48, 369-380.
[76]  Yilmaz, H., Aydin, C. and Gul, B.E. (2007) Flexural Strength and Fracture Toughness of Dental Core Ceramics. Journal of Prosthetic Dentistry, 98, 120-128.
https://doi.org/10.1016/S0022-3913(07)60045-6
[77]  Al Hamad, K.Q., Obaidat, I.I. and Baba, N.Z. (2020) The Effect of Ceramic Type and Background Color on Shade Reproducibility of All-Ceramic Restorations. Journal of Prosthodontics, 29, 511-517.
https://doi.org/10.1111/jopr.13005
[78]  Shenoy, A. and Shenoy, N. (2010) Dental Ceramics: An Update. Journal of Conservative Dentistry, 13, 195-203.
https://doi.org/10.4103/0972-0707.73379
[79]  Sedda, M., Vichi, A., Del Siena, F., Louca, C. and Ferrari, M. (2014) Flexural Resistance of Cerec CAD/CAM System Ceramic Blocks. Part 2: Outsourcing Materials. American Journal of Dentistry, 27, 17-22.
[80]  Miyazaki, T., Nakamura, T., Matsumura, H., Ban, S. and Kobayashi, T. (2013) Current Status of Zirconia Restoration. Journal of Prosthodontic Research, 57, 236-261.
https://doi.org/10.1016/j.jpor.2013.09.001
[81]  Bajraktarova-Valjakova, E., Korunoska-Stevkovska, V., Kapusevska, B., Gigovski, N., Bajraktarova-Misevska, C. and Grozdanov, A. (2018) Contemporary Dental Ceramic Materials, a Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Macedonian Journal of Medical Sciences, 24, 1742-1755.
https://doi.org/10.3889/oamjms.2018.378
[82]  Pereira, G.K.R., Guilardi, L.F., Dapieve, K.S., Kleverlaan, C.J., Rippe, M.P. and Valandro, L.F. (2018) Mechanical Reliability, Fatigue Strength and Survival Analysis of New Polycrystalline Translucent Zirconia Ceramics for Monolithic Restorations. Journal of Mechanical Behavior of Biomedical Materials, 85, 57-65.
https://doi.org/10.1016/j.jmbbm.2018.05.029
[83]  Zhang, Y.L. and Zhang, S.Z. (1999) Mechanical Properties and Microstructure of Alumina-Glass Composites. Journal of American Ceramic Society, 82, 1592-1596.
https://doi.org/10.1111/j.1151-2916.1999.tb01964.x
[84]  Apholt, W., Bindl, A., Lüthy, H. and Mörmann, W.H. (2001) Flexural Strength of Cerec 2 Machined and Jointed In-Ceram Alumina and In-Ceram Zirconia Bars. Dental Materials, 17, 260-267.
https://doi.org/10.1016/S0109-5641(00)00080-4
[85]  Pradíes, G., Godoy-Ruiz, L., Özcan, M., Moreno-Hay, I. and Martínez-Rus, F. (2019) Analysis of Surface Roughness, Fracture Toughness, and Weibull Characteristics of Different Framework-Veneer Dental Ceramic Assemblies after Grinding, Polishing, and Glazing. Journal of Prosthodontics, 28, e216-e221.
https://doi.org/10.1111/jopr.12653
[86]  Miyazaki, N. and Hoshide, T. (2018) Influence of Porosity and Pore Distributions on Strength Properties of Porous Alumin. Journal of Materials Engineering and Performance, 27, 4345-4354.
https://doi.org/10.1007/s11665-018-3500-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133