全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple Factor in Canonical Quantization Yields Affine Quantization Even for Quantum Gravity

DOI: 10.4236/jhepgc.2021.74082, PP. 1328-1332

Keywords: Canonical Quantization (CQ), Affine Quantization (AQ), Quantum Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Canonical quantization (CQ) is built around [Q, P] = 1l , while affine quantization (AQ) is built around [Q,D] = iħQ, where D ≡ (PQ +QP) / 2 . The basic CQ operators must fit -∞ < P, Q < ∞ , while the basic AQ operators can fit -∞ < P < ∞ and 0 < Q < ∞ , -∞ < Q < 0 , or even -∞ < Q ≠ 0 < ∞ . AQ can also be the key to quantum gravity, as our simple outline demonstrates.

References

[1]  Wikipedia. Constant Negative Curvature. Hyperbolic Dynamics, Scholarpedia.
[2]  Gouba, L. (2021) Affine Quantization on the Half Line. Journal of High Energy Physics, Gravitation and Cosmology, 7, 352-365.
https://doi.org/10.4236/jhepgc.2021.71019
[3]  Handy, C. and Klauder, J. (2021) Proof That Half-Harmonic Operators Become Full-Harmonic Oscillators after the Wall Slides Away. arXiv: 2108.00289.
[4]  Fantoni, R. (2021) Monte Carlo Evaluation of the Continuum Limit of . Journal of Statistical Mechanics: Theory and Experiment, 2021, arXiv: 2011.09862.
https://doi.org/10.1088/1742-5468/ac0f69
[5]  Freedman, B., Smolensky, P. and Weingarten, D. (1982) Monte Carlo Evaluation of the Continuum Limit of and . Physics Letters B, 113, 481-486.
https://doi.org/10.1016/0370-2693(82)90790-0
[6]  Aizenman, M. (1981) Proof of the Triviality of Field Theory and Some Mean-Field Features of Ising Models for . Physical Review Letters, 47, 886.
https://doi.org/10.1103/PhysRevLett.47.1
[7]  Fröhlich, J. (1982) On the Triviality of Theories and the Approach to the Critical Point in Dimensions. Nuclear Physics B, 200, 281-296.
https://doi.org/10.1016/0550-3213(82)90088-8
[8]  Fantoni, R. and Klauder, J. (2021) Affine Quantization of Succeeds While Canonical Quantization Fails. Physical Review D, 103, Article ID: 076013.
https://doi.org/10.1103/PhysRevD.103.076013
[9]  Klauder, J. (2021) Evidence for Expanding Quantum Field Theory. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1157-1160.
https://doi.org/10.4236/jhepgc.2021.73067
[10]  Klauder, J. (2021) Using Coherent States to Make Physically Correct Classical-to-Quantum Procedures That Help Resolve Nonrenomalizable Fields Including Einstein’s Gravity. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1019-1026.
https://doi.org/10.4236/jhepgc.2021.73060
[11]  Klauder, J. (2020) Using Affine Quantization to Analyze Nonrenotmalizable Scalar Fields and the Quantization of Einstein’s Gravity. Journal of High Energy Physics, Gravitation and Cosmology, 6, 802-816.
https://doi.org/10.4236/jhepgc.2020.64053
[12]  Arnowitt, R., Deser, S. and Misner, C. (1962) The Dynamics of General Relativity. In: Witten, L., Ed., Gravitation: An Introduction to Current Research, Wiley & Sons, New York, p. 227.
[13]  Wikipedia. Ricci Scalar.
https://en.wikipedia.org/wiki/Ricci_curvature
[14]  Klauder, J. and Skagerstam, B.-S. (1985) Coherent States: Applications in Physics and Mathematical Physics. World Scientific, Singapore.
https://doi.org/10.1142/0096
[15]  Klauder, J. (2006) Fundamentals of Quantum Gravity. arXiv: gr-qc/0612168v1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133