|
贵州南部一次暴雨过程诊断分析
|
Abstract:
本文利用MICAPS资料分析了贵州2019年6月5~7日上空环流形势,结合TBB卫星云图资料,观察云团生成、发展与消散各个阶段的特征,检验比EC细网格对此次天气过程的预报能力。综合得出:受高空槽东移影响,槽前正涡度平流有利于低层上升运动,同时700 hpa上低涡中心延伸出东西两段,贵州北部和南部受低涡西段影响,850 hpa切变东移南压,地面受云南热低压影响,辐合线地面辐合线维持在省的西南部缓慢移动,导致夜间出现强降水。结合配料法分析各层的物理量,整层水汽条件较好,加上空间动力配置较好,热低压、短波槽、低空切变线、地面辐合线相互作用,导致此次贵州南部出现大暴雨,并伴有较强的短时强降水。检验EC作为大尺度预报对此次过程的预报能力,得出模式预报范围与实况较接近,量级偏小,南部暴雨、大暴雨漏报的结论。
Using MICAPS data, this paper analyzes the circulation situation over Guizhou from June 5 to 7, 2019, combined with TBB satellite cloud image data, observes the characteristics of each stage of cloud formation, development and dissipation, and tests the prediction ability of finer grid compar-ing to EC for this weather process. It is concluded that the positive vorticity advection in front of the trough is conducive to the upward movement of the lower layer under the influence of the eastward movement of the high-altitude trough. At the same time, the low vortex center extends from the east to the west at 700 hPa. The northern and southern Guizhou are affected by the western section of the low vortex, the shear at 850 hPa moves eastward and southward, the ground is affected by the thermal low pressure in Yunnan, and the convergence line maintains a slow movement in the southwest of the province, resulting in heavy precipitation at night. Combined with the analysis of the physical quantity of each layer, the water vapor condition of the whole layer is good, coupled with the good spatial dynamic configuration, and the interaction of thermal low pressure, short wave trough, low-level shear line and ground convergence line, resulting in the heavy rainstorm in Southern Guizhou, accompanied by strong short-term heavy precipitation. The prediction ability of EC as a large-scale forecast for this process is tested. It is concluded that the prediction range of the model is close to the actual situation, the magnitude is small, and the rainstorm and heavy rainstorm in the south are not reported.
[1] | 刘新伟, 叶培龙, 伏晶, 段海霞, 杨晓军. 高原切变线形态演变对高原边坡一次降水过程的影响分析[J]. 高原气象, 2020, 39(2): 225-229. |
[2] | 伍志方, 蔡景就, 林良勋, 胡胜, 张华龙, 韦凯华. 2017年广州“5?7”暖区特大暴雨的中尺度系统和可预报性[J]. 气象, 2018, 44(4): 485-499. |
[3] | 陶祖钰, 刘伟. 关于暴雨和湿急流的讨论[J]. 气象学报, 2005, 63(5): 825-833. |
[4] | 谌芸, 陈涛, 汪玲瑶, 李晟祺, 徐珺. 中国暖区暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 483-493. |
[5] | 雷蕾, 邢楠, 周璇, 等. 2018年北京“7?16”暖区特大暴雨特征及形成机制研究[J]. 气象学报, 2020, 78(1): 1-17. |
[6] | 管勇, 刘玉明, 胡丽华, 梁敏妍, 杨群娜. 广东两次特大暴雨成因的诊断对比[J]. 气象科技, 2010, 38(5): 565-571. |
[7] | 李生辰, 张青梅, 沈晓燕, 等. 青海高原暴雨的形成条件与基本特征分析[J]. 高原气象, 2021, 1-15. |
[8] | 李强, 王中, 白莹莹, 杜钦. 一次区域性大暴雨过程中尺度诊断分析[J]. 气象科技, 2011, 39(4): 453-461. |
[9] | 黄楚惠, 李国平, 牛金龙, 罗玲, 张卫. 一次高原低涡东移引发四川盆地强降水的湿螺旋度分析[J]. 高原气象, 2011, 30(6): 1427-1434. |
[10] | 李国平, 刘行军. 西南低涡暴雨的湿位涡诊断分析[J]. 应用气象学报, 1994, 5(3): 354-360. |
[11] | 吴哲红, 虞苏青, 丁治英, 伍红雨. 贵州地区一次暴雨的数值模拟及不稳定性诊断分析[J]. 高原气象, 2008, 27(6): 1307-1314. |
[12] | 伍红雨. 贵州一次大暴雨过程的中尺度数值模拟与诊断分析[J]. 暴雨灾害, 2007, 26(4): 361-368. |
[13] | 井喜, 陈见, 胡春娟, 井宇, 屠妮妮, 王东海, 等. 广西和贵州MCC暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-351. |
[14] | 李腹广, 王芬. 黔西南州一次暴雨中尺度对流系统的发展分析[J]. 贵州气象, 2006, 30(3): 3-5. |
[15] | 崔庭, 吴古会, 赵玉金, 杨玲, 张强宜. 黔西南州望谟县“6?06”特大暴雨过程中尺度分析[J] .安徽农业科学, 2012, 40(4): 2260-2263. |
[16] | 陈晓燕, 周翠芳, 杨玲. 2004年7月4-5日贵州省黔西南州首场暴雨的物理量诊断分析[J]. 云南地理研究, 2014(12): 14-16. |