全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深度学习算法在工业设备故障诊断应用研究
Research on Application of Deep Learning Algorithm in Fault Diagnosis of Industrial Equipment

DOI: 10.12677/JSTA.2021.94023, PP. 193-200

Keywords: 故障诊断分类,深度学习,设备预知性维护,特征提取
Fault Diagnosis Classification
, Deep Learning, Predictive Maintenance of Equipment, Feature Extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

故障诊断分类技术在工业上已经被广泛的使用,在工业设备维护起到了关键性作用,但是自动故障诊断分类技术目前还存在不足,要求精确地对设备机械进行自动诊断,准确地分析出设备故障产生的原因,从而确定故障发生的部位。针对工业上旋转机械设备的特殊性和复杂性,引入了深度学习算法来提高设备故障分类的准确率。首先对旋转机械设备建立数据集,通过深度学习算法对数据进行特征提取,由多个网络层迭代学习设备故障特征,最终优化深度学习算法模型输出不同设备故障类型,提高系统分类的准确率。本文还对故障诊断分类等技术进行总结与分析,然后重点分析了深度学习故障诊断技术在工业上机械旋转类的应用;最后提出了现有深度学习故障诊断分类技术研发方法的不足,希望深度学习领域在故障诊断技术有很好的发展。
Fault diagnosis classification technology has been widely used in the industry and has played a key role in the maintenance of industrial equipment. However, the automatic fault diagnosis classification technology currently has shortcomings. It requires accurate automatic diagnosis of equipment and machinery, and accurate analysis of equipment failures, the cause of the occurrence so as to determine the location of the fault. Aiming at the particularity and complexity of industrial rotating machinery and equipment, deep learning algorithms are introduced to improve the accuracy of equipment fault classification. Firstly, a data set is established for rotating machinery and equipment, and features are extracted through deep learning algorithms. Multiple network layers are used to iteratively learn equipment fault features. Finally, the deep learning algorithm model is optimized to output different types of equipment faults to improve the accuracy of system classification. This paper also summarizes and analyzes fault diagnosis and classification technologies, and then focuses on the application of deep learning fault diagnosis technology in industrial mechanical rotation. Finally, it puts forward the shortcomings of the existing deep learning fault diagnosis classification technology research and development methods, and hopes the deep learning field has a very good development in fault diagnosis technology.

References

[1]  卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016(1): 1-17.
[2]  彭博, 臧笛. 基于深度学习的车标识别方法研究[J]. 计算机科学, 2015, 42(4): 268-273.
[3]  戴礼荣, 张仕良, 黄智颖. 基于深度学习的语音识别技术现状与展望[J]. 数据采集与处理, 2017, 32(2): 221-231.
[4]  卢坚, 陈毅松, 孙正兴, 等. 基于隐马尔可夫模型的音频自动分类[J]. 软件学报, 2002, 13(8): 1593-1597.
[5]  褚东亮. 旋转机械故障信号分析及诊断技术研究[D]: [博士学位论文]. 北京: 华北电力大学, 2017.
[6]  邹晓艺. 基于变换域特征与深度学习的图像分类研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2015.
[7]  徐敏. 设备故障诊断手册: 机械设备状态监测和故障诊断[M]. 西安: 西安交通大学出版社, 1998.
[8]  Lou, X. and Loparo, K.A. (2004) Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference. Mechanical Systems & Signal Processing, 18, 1077-1095.
https://doi.org/10.1016/S0888-3270(03)00077-3
[9]  胡亮, 董兆宇, 戴煜林, 等. 深沟球轴承系列特征频率计算分析[J]. 噪声与振动控制, 2015, 35(3): 169-172.
[10]  李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515.
[11]  赵建鹏, 周俊. 基于长短时记忆网络的旋转机械状态预测研究[J]. 噪声与振动控制, 2017, 37(4): 155-159.
[12]  杨立东, 张壮壮. 改进卷积神经网络的音频场景分类研究[J]. 现代电子技术, 2021, 44(3): 91-94.
[13]  邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]: [博士学位论文]. 南京: 东南大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133