全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

镍钴锰基正极材料表面结构演变机制研究
Study on the Evolution Mechanism of the Surface Structure of Nickel-Cobalt-Manganese-Based Cathode Materials

DOI: 10.12677/JAPC.2021.103017, PP. 181-187

Keywords: 三元材料,失效机理,表面重构,球差电镜
Ternary Materials
, Degradation Mechanism, Surface Reconstruction, Spherical Differential Electron Microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,锂离子电池(LIBs)在日常生活中发挥着越来越重要的作用。在此,通过原子分析和球差校正扫描透射电子显微镜(STEM)以及电子能量损失谱(EELS)模拟分析,全面研究了层状过渡金属氧化物LiNi0.5Co0.2Mn0.3O2 (NCM523)单晶颗粒的降解机制。材料表面附近的结构转变是包括催化、记忆和储能在内的广泛应用的功能机制的基础。在锂离子电池的层状氧化物阴极中,我们观察到岩盐相的转变是从近表层开始的,而不是从最表面开始。将原子水平的扫描透射电子显微镜成像与电子能量损失光谱相结合,我们发现重建的近表层,以层状和尖晶石状结构的离散斑块为特征,其中却存在大量的2价金属原子,我们的研究结果为层状阴极结构转变的原子尺度机制提供了基本的见解。
In recent years, lithiumion batteries (LIBs) have been playing an increasingly important role in daily life. Here, the degradation mechanism of layered transition metal oxide LiNi0.5Co0.2Mn0.3O2 (NCM523) single crystal particles was comprehensively investigated by atomic analysis and sphere-difference corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) simulations. Structural transitions near the material surface are the basis for a wide range of functional mechanisms including catalysis, memory and energy storage. In the layered oxide cathode of lithiumion batteries, we observed that the rock salt phase transition starts near the surface rather than at the very surface. Combining scanning transmission electron microscopy imaging at the atomic level with electron energy loss spectroscopy, we find that the reconstructed near-surface layer, characterized by discrete patches of layered and spinel-like structures, nevertheless contains a large number of 2-valent metal atoms, and our results provide fundamental insights into the atomic-scale mechanism of the structural transition in layered cathodes.

References

[1]  Li, W., Song, B. and Manthiram, A. (2017) High-Voltage Positive Electrode Materials for Lithium-Ion Batteries. Chemical Society Reviews, 46, 3006-3059.
https://doi.org/10.1039/C6CS00875E
[2]  Yoon, C.S., Kim, S.J., Kim, U.-H., et al. (2018) Microstructure Evolution of Concentration Gradient LiNi0.75Co0.1Mn0.15O2 Cathode for Lithium-Ion Batteries. Advanced Functional Materials, 28, Article ID: 1802090.
https://doi.org/10.1002/adfm.201802090
[3]  Fan, E.S., Li, L., Wang, Z.P., et al. (2020) Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 120, 7020-7063.
https://doi.org/10.1021/acs.chemrev.9b00535
[4]  Lee, S.Y., Park, G.S., Jung, C., et al. (2019) Revisiting Primary Particles in Layered Lithium Transition-Metal Oxides and Their Impact on Structural Degradation. Advanced Science, 6, Article ID: 1800843.
https://doi.org/10.1002/advs.201800843
[5]  Kim, U.-H., Lee, E.-J., Yoon, C.S., et al. (2016) Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 6, Article ID: 1601417.
https://doi.org/10.1002/aenm.201601417
[6]  Kondrakov, A.O., Schmidt, A., Xu, J., et al. (2017) Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. The Journal of Physical Chemistry C, 121, 3286-3294.
https://doi.org/10.1021/acs.jpcc.6b12885
[7]  Kim, Y. (2012) Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance as a Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 4, 2329-2333.
https://doi.org/10.1021/am300386j
[8]  Liu, W., Oh, P., Liu, X., et al. (2015) Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition, 54, 4440-4457.
https://doi.org/10.1002/anie.201409262
[9]  Ko, D.-S., Park, J.-H., Park, S., et al. (2019) Microstructural Visualization of Compositional Changes Induced by Transition Metal Dissolution in Ni-Rich Layered Cathode Materials by High-Resolution Particle Analysis. Nano Energy, 56, 434-442.
https://doi.org/10.1016/j.nanoen.2018.11.046
[10]  Zhou, H., Xin, F., Pei, B., et al. (2019) What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? ACS Energy Letters, 4, 1902-1906.
https://doi.org/10.1021/acsenergylett.9b01236
[11]  Li, C.-F., Zhao, K., Liao, X., et al. (2021) Interface Cation Migration Kinetics Induced Oxygen Release Heterogeneity in Layered Lithium Cathodes. Energy Storage Materials, 36, 115-122. https://doi.org/10.1016/j.ensm.2020.12.018
[12]  Guo, H.-J., Wang, H.-X., Guo, Y.-J., et al. (2020) Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi0.5Co0.2Mn0.3O2 in Quasi-Solid-State Lithium Batteries. Journal of the American Chemical Society, 142, 20752-20762.
https://doi.org/10.1021/jacs.0c09602
[13]  Wen, B., Deng, Z., Tsai, P.-C., et al. (2020) Ultrafast Ion Transport at a Cathode-Electrolyte Interface and Its Strong Dependence on Salt Solvation. Nature Energy, 5, 578-586.
https://doi.org/10.1038/s41560-020-0647-0
[14]  Zhang, S., Yin, Z., Wu, Z., et al. (2021) Achievement of High-Cyclability and High-Voltage Li-Metal Batteries by Heterogeneous SEI Film with Internal Ionic Conductivity/External Electronic Insulativity Hybrid Structure. Energy Storage Materials, 40, 337-346.
https://doi.org/10.1016/j.ensm.2021.05.029
[15]  Ren, Z., Zhao, R., Chen, X., et al. (2018) Mesopores Induced Zero Thermal Expansion in Single-Crystal Ferroelectrics. Nature Communications, 9, 1638.
https://doi.org/10.1038/s41467-018-04113-y
[16]  Li, M., Tang, C., Paudel, T.R., et al. (2019) Controlling the Magnetic Properties of LaMnO3/SrTiO3 Heterostructures by Stoichiometry and Electronic Reconstruction: Atomic-Scale Evidence. Advanced Materials, 31, Article ID: 1901386.
https://doi.org/10.1002/adma.201901386
[17]  Guo, Y., Hong, X., Wang, Y., et al. (2019) Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor. Advanced Functional Materials, 29, Article ID: 1809004.
https://doi.org/10.1002/adfm.201809004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133