|
镍钴锰基正极材料表面结构演变机制研究
|
Abstract:
[1] | Li, W., Song, B. and Manthiram, A. (2017) High-Voltage Positive Electrode Materials for Lithium-Ion Batteries. Chemical Society Reviews, 46, 3006-3059. https://doi.org/10.1039/C6CS00875E |
[2] | Yoon, C.S., Kim, S.J., Kim, U.-H., et al. (2018) Microstructure Evolution of Concentration Gradient LiNi0.75Co0.1Mn0.15O2 Cathode for Lithium-Ion Batteries. Advanced Functional Materials, 28, Article ID: 1802090.
https://doi.org/10.1002/adfm.201802090 |
[3] | Fan, E.S., Li, L., Wang, Z.P., et al. (2020) Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 120, 7020-7063. https://doi.org/10.1021/acs.chemrev.9b00535 |
[4] | Lee, S.Y., Park, G.S., Jung, C., et al. (2019) Revisiting Primary Particles in Layered Lithium Transition-Metal Oxides and Their Impact on Structural Degradation. Advanced Science, 6, Article ID: 1800843.
https://doi.org/10.1002/advs.201800843 |
[5] | Kim, U.-H., Lee, E.-J., Yoon, C.S., et al. (2016) Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 6, Article ID: 1601417.
https://doi.org/10.1002/aenm.201601417 |
[6] | Kondrakov, A.O., Schmidt, A., Xu, J., et al. (2017) Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. The Journal of Physical Chemistry C, 121, 3286-3294.
https://doi.org/10.1021/acs.jpcc.6b12885 |
[7] | Kim, Y. (2012) Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance as a Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 4, 2329-2333.
https://doi.org/10.1021/am300386j |
[8] | Liu, W., Oh, P., Liu, X., et al. (2015) Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition, 54, 4440-4457.
https://doi.org/10.1002/anie.201409262 |
[9] | Ko, D.-S., Park, J.-H., Park, S., et al. (2019) Microstructural Visualization of Compositional Changes Induced by Transition Metal Dissolution in Ni-Rich Layered Cathode Materials by High-Resolution Particle Analysis. Nano Energy, 56, 434-442. https://doi.org/10.1016/j.nanoen.2018.11.046 |
[10] | Zhou, H., Xin, F., Pei, B., et al. (2019) What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? ACS Energy Letters, 4, 1902-1906. https://doi.org/10.1021/acsenergylett.9b01236 |
[11] | Li, C.-F., Zhao, K., Liao, X., et al. (2021) Interface Cation Migration Kinetics Induced Oxygen Release Heterogeneity in Layered Lithium Cathodes. Energy Storage Materials, 36, 115-122. https://doi.org/10.1016/j.ensm.2020.12.018 |
[12] | Guo, H.-J., Wang, H.-X., Guo, Y.-J., et al. (2020) Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi0.5Co0.2Mn0.3O2 in Quasi-Solid-State Lithium Batteries. Journal of the American Chemical Society, 142, 20752-20762.
https://doi.org/10.1021/jacs.0c09602 |
[13] | Wen, B., Deng, Z., Tsai, P.-C., et al. (2020) Ultrafast Ion Transport at a Cathode-Electrolyte Interface and Its Strong Dependence on Salt Solvation. Nature Energy, 5, 578-586. https://doi.org/10.1038/s41560-020-0647-0 |
[14] | Zhang, S., Yin, Z., Wu, Z., et al. (2021) Achievement of High-Cyclability and High-Voltage Li-Metal Batteries by Heterogeneous SEI Film with Internal Ionic Conductivity/External Electronic Insulativity Hybrid Structure. Energy Storage Materials, 40, 337-346. https://doi.org/10.1016/j.ensm.2021.05.029 |
[15] | Ren, Z., Zhao, R., Chen, X., et al. (2018) Mesopores Induced Zero Thermal Expansion in Single-Crystal Ferroelectrics. Nature Communications, 9, 1638. https://doi.org/10.1038/s41467-018-04113-y |
[16] | Li, M., Tang, C., Paudel, T.R., et al. (2019) Controlling the Magnetic Properties of LaMnO3/SrTiO3 Heterostructures by Stoichiometry and Electronic Reconstruction: Atomic-Scale Evidence. Advanced Materials, 31, Article ID: 1901386. https://doi.org/10.1002/adma.201901386 |
[17] | Guo, Y., Hong, X., Wang, Y., et al. (2019) Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor. Advanced Functional Materials, 29, Article ID: 1809004.
https://doi.org/10.1002/adfm.201809004 |