|
含水玄武质熔体与方辉橄榄岩反应对克拉通岩石圈演化的约束
|
Abstract:
克拉通岩石圈在减薄的过程中几乎都发生了性质的改变,在古生代之前华北克拉通的岩石圈地幔主要的岩石类型是方辉橄榄岩,而在中生代以后主要的岩石类型是二辉橄榄岩。在克拉通破坏的过程中,来自软流圈和俯冲板块的玄武质熔体在上升中加热软化岩石圈地幔的同时交代改造岩石圈,但并非所有克拉通岩石圈都会因玄武岩熔体的交代而受到破坏。为了深入了解玄武质熔体交代克拉通岩石圈地幔对认识克拉通型岩石圈地幔演化的意义,在活塞圆筒压机上进行了1100℃/3.0 GPa条件下含水玄武质熔体与方辉橄榄岩的反应实验,模拟了与太平洋板块俯冲有关的岩石圈来源的玄武质熔体交代岩石圈地幔的情景。实验结果显示,克拉通岩石圈交代以后可以从方辉橄榄岩向二辉橄榄岩转化,这与华北克拉通岩石圈中生代的演化趋势一致。因此,太平洋板块俯冲断离造成的含水玄武质熔体上涌可能是造成中生代华北克拉通岩石圈破坏的重要原因之一。
The lithosphere of the craton has almost all changed in the process of thinning, and before the Paleozoic Era, the main rock type of the lithospheric mantle of the North China Cratons was harzburgite, while the main rock type after the Mesozoic Era was lherzolite. In the process of craton destruction, basaltic melts from the asthenosphere and subducting plates heat and soften the lithospheric mantle while replacing and reforming the lithosphere, but not all cratonic lithospheres are damaged due to replacement of basaltic melts. In order to understand the significance of replacing cratonic lithospheric mantle by basaltic melts for recognizing the evolution of craton-type lithospheric mantle, we carried out 1100?C/3.0 GPa water-bearing basaltic melts and harzburgite on a piston cylinder press. The reaction experiment simulates the scenario in which basaltic melts derived from the lithosphere associated with the subduction of the Pacific plate replace the lithospheric mantle. The results show that after replacement, the cratonic lithosphere can be transformed from harzburgite to lherzolite, which is consistent with the Mesozoic evolution trend of the North China cratonic lithosphere. Therefore, the upwelling of water-bearing basaltic melts caused by the subduction and break-off of the Pacific plate may be one of the important reasons for the destruction of the Mesozoic lithosphere in the North China Cratons.
[1] | 吴福元, 徐义刚, 高山, 郑建平. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174. |
[2] | Wu, F.Y., Xu, Y.G., Zhu, R.X. amd Zhang, G.W. (2014) Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57, 2878-2890. https://doi.org/10.1007/s11430-014-4995-0 |
[3] | Zheng, J., Griffin, W.L., O’Reilly, S.Y., Yang, J.S., Li, T.F., Zhang, M., et al. (2006) Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47, 2233-2256. https://doi.org/10.1093/petrology/egl042 |
[4] | Menzies, M., Xu, Y., Zhang, H. and Fan, W. (2007) Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 96, 1-21. https://doi.org/10.1016/j.lithos.2006.09.008 |
[5] | Fan, W.-M., Zhang, H.F., Baker, J., Jarvis, K.E., Mason, P.R.D. and Menzies, M.A. (2000) On and Off the North China Craton: Where Is the Archaean Keel? Journal of Petrology, 41, 933-950. https://doi.org/10.1093/petrology/41.7.933 |
[6] | Zheng, J., Griffin, W.L., O’Reilly, S.Y., Liou, J.G., Zhang, R.Y. and Lu, F. (2005) Late Mesozoic-Eocene Mantle Replacement beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 47, 457-472. https://doi.org/10.2747/0020-6814.47.5.457 |
[7] | Xu, Y.-G (2001) Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 747-757. https://doi.org/10.1016/S1464-1895(01)00124-7 |
[8] | 吴福元, 徐义刚, 朱日祥, 张国伟. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44(11): 2358-2372.
https://doi.org/10.1360/zd-2014-44-11-2358 |
[9] | 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1): 24-36. |
[10] | 张宏福. 橄榄岩-熔体相互作用: 克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 2009, 54(14): 2008-2026. |
[11] | Xu, W., Gao, S., Wang, Q., Wang, D. and Liu, Y. (2006) Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34, 721-724.
https://doi.org/10.1130/G22551.1 |
[12] | Gao, S., Zhang, J.F., Xu, W.L. and Liu, Y.S. (2009) Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54, Article No. 3367. https://doi.org/10.1007/s11434-009-0395-9 |
[13] | Xu, Y., Li, H.Y., Pang, C.J. and He, B. (2009) On the Timing and Duration of the Destruction of the North China Craton. Chinese Science Bulletin, 54, 3379-3396. https://doi.org/10.1007/s11434-009-0346-5 |
[14] | Xu, Y.-G., Ma, J.L., Frey, F.A., Feigenson, M.D. and Liu, J.-F. (2005) Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224, 247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004 |
[15] | 徐义刚. 用玄武岩组成反演中——新生代华北岩石圈的演化[J]. 地学前缘, 2006, 13(2): 93-104. |
[16] | Szilas, K., Kelemen, P.B. and Bernstein, S. (2015) Peridotite Enclaves Hosted by Mesoarchaean TTG-Suite Orthogneisses in the Fiskefjord Region of Southern West Greenland. GeoResJ, 7, 22-34.
https://doi.org/10.1016/j.grj.2015.03.003 |
[17] | Bernstein, S., Kelemen, P.B. and Brooks, C.K. (1998) Depleted Spinel Harzburgite Xenoliths in Tertiary Dykes from East Greenland: Restites from High Degree Melting. Earth & Planetary Science Letters, 154, 221-235.
https://doi.org/10.1016/S0012-821X(97)00175-1 |
[18] | Bernstein, S., Hangh?j, K., Kelemen, P.B. and Kent Brooks, C. (2006) Ultra-Depleted, Shallow Cratonic Mantle Beneath West Greenland: Dunitic Xenoliths from Ubekendt Ejland. Contributions to Mineralogy & Petrology, 152, Article No. 335. https://doi.org/10.1007/s00410-006-0109-0 |
[19] | Chen, M.-M., Tian, W., Suzuki, K., Tejada, M.-L.-G., Liu, F.-L., Senda, R., et al. (2014) Peridotite and Pyroxenite Xenoliths from Tarim, NW China: Evidences for Melt Depletion and Mantle Refertilization in the Mantle Source Region of the Tarim Flood Basalt. Lithos, 204, 97-111. https://doi.org/10.1016/j.lithos.2014.01.005 |
[20] | Griffin, W.L., Kobussen, A.F., Babu, E.V.S.S.K., O’Reilly, S.Y., Norris, R. et al. (2009) A Translithospheric Suture in the Vanished 1-Ga lithospheric Root of South India: Evidence from Contrasting Lithosphere Sections in the Dharwar Craton. Lithos, 112, 1109-1119. https://doi.org/10.1016/j.lithos.2009.05.015 |
[21] | 徐义刚. 上地幔熔体-岩石相互作用与大陆地幔演化[J]. 地学前缘, 1998, 5(z1): 76-85. |
[22] | 徐义刚. 华北岩石圈减薄的时空不均一特征[J]. 高校地质学报, 2004, 10(3): 324-331. |
[23] | 徐义刚, Bodinier, J.-L., Menzies, M.A., Mercier, J.-C.C. 熔体-上地幔岩石的相互作用及稀土元素模拟计——以法国中央高原堡雷幔源包体为例[J]. 地球化学, 1997, 27(3): 205-217. |
[24] | Ma, Q., Xu, Y.-G., Zheng, J.-P., Griffin, W.L., Hong, L.-B. and Ma, L. (2016) Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: The Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 57, 1279-1308. https://doi.org/10.1093/petrology/egw040 |
[25] | Lambart, S., Laporte, D., Provost, A. and Schiano, P. (2012) Fate of Pyroxenite-Derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints. Journal of Petrology, 53, 451-476.
https://doi.org/10.1093/petrology/egr068 |
[26] | Lambart, S., Laporte, D. and Schiano, P. (2009) An Experimental Study of Focused Magma Transport and Basalt-Peridotite Interactions Beneath Mid-Ocean Ridges: Implications for the Generation of Primitive MORB Compositions. Contributions to Mineralogy & Petrology, 157, 429-451. https://doi.org/10.1007/s00410-008-0344-7 |
[27] | Shaw, C.S.J. and Dingwell, D.B. (2008) Experimental Peridotite-Melt Reaction at One Atmosphere: A Textural and Chemical Study. Contributions to Mineralogy and Petrology, 155, 199-214.
https://doi.org/10.1007/s00410-007-0237-1 |
[28] | Tingle, T.N., Green Jr., H.W., Young, T.E. and Koczynski, T.A. (1993) Improvements to Griggs-Type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure & Applied Geophysics, 141, 523-543.
https://doi.org/10.1007/BF00998344 |
[29] | 夏莹, 丁兴, 宋茂双, 熊小林, 邵同宾, 李建峰, 等. 活塞圆筒装置压力盘样品组装的温度测定和热结构分析[J]. 高压物理学报, 2014, 28(3): 262-272. |
[30] | Yaxley, G.M. and Green, D.H. (1998) Reactions between Eclogite and Peridotite: Mantle Refertilisation by Subduction of Oceanic Crust. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78, 243-255. |
[31] | Lambart, S., Laporte, D., Provost, A. and Schiano, P. (2012) Fate of Pyroxenite-Derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints. Journal of Petrology, 53, 451-476.
https://doi.org/10.1093/petrology/egr068 |
[32] | Shaw, C.S.J. and Dingwell, D.B. (2008) Experimental Peridotite-Melt Reaction at One Atmosphere: A Textural and Chemical Study. Contributions to Mineralogy and Petrology, 155, 199-214.
https://doi.org/10.1007/s00410-007-0237-1 |
[33] | Tominaga, A., Kato, T., Kubo, T. and Kurosawa, M. (2009) Preliminary Analysis on the Mobility of Trace Incompatible Elements during the Basalt and Peridotite Reaction under Uppermost Mantle Conditions. Physics of the Earth & Planetary Interiors, 174, 50-59. https://doi.org/10.1016/j.pepi.2008.09.019 |