全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有介质柱缺陷的二维正方晶格光子晶体的带隙
The Band Gaps of Two-Dimensional Tetragonal Lattice Photonic Crystals with Dielectric Column Defects

DOI: 10.12677/OE.2021.113014, PP. 110-124

Keywords: 二维光子晶体,有限时域差分,折射率沿半径阶梯增加,带隙,缺陷
Two-Dimensional Photonic Crystal
, FDTD, Refractive Index Stepwise Increasing, Band Gap, Defect

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了在二维光子晶体中对带隙位置和宽度进行调控,观察介质柱缺陷对光子晶体带隙的影响,文章研究了这样的二维光子晶体结构:介质圆柱排列成正方形结构,圆柱介质折射率沿半径阶梯性增加,在该种光子晶体中设置介质柱缺陷。文章对比研究了下列几种结构:1) 半径r = 0.6 μm,晶格常数a = 1.8 μm,折射率沿半径分3层增加幅度不同,在晶体中预设1~3个空气柱缺陷;2) 半径r = 0.8 μm,晶格常数a = 2.4 μm,折射率沿半径分4层增加幅度不同,在晶体中预设1~2个空气柱缺陷;3) 半径r = 0.8 μm,晶格常数a = 2.4 μm,折射率沿半径分4层增加幅度不同,在晶体中预设1~2个介质柱缺陷;4) 半径r = 0.8 μm,晶格常数a = 2.4 μm,折射率沿半径分4层增加幅度不同,在晶体中分别预设5个空气柱缺陷和介质柱缺陷。用有限时域差分(FDTD)方法,计算平面光波通过上述几种二维光子晶体后的透射率,得到光子晶体的带隙。发现在相同结构下,光子晶体的带隙主要由填充率和结构决定,设置的空气柱缺陷和介质柱缺陷对光子晶体的带隙影响很小。
In order to control band gap width and position in two-dimensional photonic crystal, to observe the influence of medium column defect with photonic crystal band gap, this article studied two-dimensional photonic crystal structure: dielectric cylinder arranged in a square construction, cylindrical dielectric refractive index stepwise increase along the radius, setting medium columns in this kind of photonic crystal as defect. The following structures are compared and studied: 1) The radius r = 0.6 μm, the lattice constant a = 1.8 μm, the refractive index increases by three layers along the radius, and 1~3 air column defects are preset in the crystal; 2) The radius r = 0.8 μm, the lattice constant a = 2.4 μm, the refractive index increases by four layers along the radius, and 1~2 air column defects are preset in the crystal; 3) The radius r = 0.8 μm, the lattice constant a = 2.4 μm, the refractive index increases by four layers along the radius, and 1~2 dielectric column defects are preset in the crystal; 4) The radius r = 0.8 μm, the lattice constant a = 2.4 μm, the refractive index increases by four layers along the radius, 5 air column defects and medium column defects are preset in the crystal, respectively. The band gaps of photonic crystals are obtained by using the finite difference time domain (FDTD) method to calculate the transmittance of plane light waves passing through the above two dimensional photonic crystals. It is found that for the same structure, the band gap of photonic crystals is mainly determined by the filling rate and structure, and the defects of air column and medium column have little effect on the band gap of photonic crystals.

References

[1]  Ablonovitch, E. (1987) Inhibited Spontaneous Emission in Solid-State Physics Electronics. Physical Review Letters, 58, 2059-2062.
https://doi.org/10.1103/PhysRevLett.58.2059
[2]  John, S. (1987) Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, 58, 2486-2489.
https://doi.org/10.1103/PhysRevLett.58.2486
[3]  Butt, M.A., Khonina, S.N. and Kazanskiy, N.L. (2021) Recent Advances in Photonic Crystal Optical Devices: A Review. Optics & Laser Technology, 142, Article No. 107265.
https://doi.org/10.1016/j.optlastec.2021.107265
[4]  Gómez-Urrea, H.A., Ospina-Medina, M.C., et al. (2020) Tunable Band Structure in 2D Bravais-Moiré Photonic Crystal Lattices. Optics Communications, 459, Article No. 125081.
https://doi.org/10.1016/j.optcom.2019.125081
[5]  Liu, X.-J., Lu, J.-B., et al. (2017) Adjustable Band Gaps Structures and Semi-Dirac Points in Two-Dimensional Linear Function Photonic Crystals. Optik, 149, 252-260.
https://doi.org/10.1016/j.ijleo.2017.08.058
[6]  Yin, X.-G., Li, D.-C., Tang, S.-R. and Wu. H.-X. (2018) Study on Band Gaps Structure and Eigenfifield Distribution of Two-Dimensional Function Photonic Crystals with Point Defect. Optik, 172, 662-667.
https://doi.org/10.1016/j.ijleo.2018.06.059
[7]  Hassanzadeh, M., Sovizi, M. and Mohsseni, M. (2013) Position Calculation of the Frequency Band Gap in the Fifinite Photonic Crystal with Multiple Alternations Using Boundary Element Method. Optik, 124, 6869-6873.
https://doi.org/10.1016/j.ijleo.2013.05.153
[8]  Anghel, I. (2019) Numerical Investigation of Photonic Crystals Structure on Zinc Oxide Fifilm. Optik, 185, 282-286.
https://doi.org/10.1016/j.ijleo.2019.03.127
[9]  熊翠秀, 邓杨保, 邓曙光. 峰值折射率对正弦型函数光子晶体带隙的影响[J]. 激光与红外, 2014, 44(8): 913-916.
[10]  Wun, X.-Y., Zhang, B.-J., Liu, X.-J., et al. (2012) Light Fifield Distribution of General Function Photonic Crystals. Physica E: Low-Dimensional Systems and Nanostructures, 46, 133-138.
https://doi.org/10.1016/j.physe.2012.09.009
[11]  刘晓静, 梁禺, 刘继平, 等. 新型二维函数光子晶体的透射特性[J]. 吉林大学学报(理学版), 2017, 55(4): 985-989.
[12]  陈义万, 杜海霞, 陈昭蓉, 闵锐. 二维光子晶体带隙与结构的关系[J]. 湖北大学学报(自然科学版), 2016, 33(3): 220-223.
[13]  葛德彪, 阎玉波. 电磁波时域有限差分方法(第3版) [M]. 西安: 西安电子科技大学出版社, 2011.
[14]  陈义万, 杜海霞, 陈昭蓉. 一种获得二维光子晶体多个宽带隙的新方法[J]. 光电子, 2018, 8(3): 113-122.
https://doi.org/10.12677/OE.2018.83016
[15]  陈义万, 杜海霞, 陈昭蓉, 张群芝. 用折射率阶梯增加的二维正方晶格光子晶体获得宽带隙[J]. 光电子, 2020, 10(3): 53-59.
https://doi.org/10.12677/OE.2020.103007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133