|
Finance 2021
基于中国A股上市公司的隧道挖掘研究
|
Abstract:
前人研究发现大股东会通过非正常关联交易、披露虚假财务信息等隧道挖掘手段侵占中小股东利益。本文根据2009~2019年度A股上市公司的面板数据,基于Cscore财务造假预测模型,以预计业绩以及预计业绩与是否亏损、是否再融资、股市下行和是否财务造假之间的交互项为核心解释变量构建隧道挖掘回归模型,研究隧道挖掘作用机制并通过实证分析隧道挖掘与财务造假事前风险Cscore的关联性。研究结果表明:总体来看,上市公司的预计业绩与实际业绩正相关,隧道挖掘与财务造假事前风险Cscore正相关,公司预计业绩越高,隧道挖掘越显著。就单个公司而言,隧道挖掘与再融资、股市下行正相关,与发生亏损负相关;如果公司被证监会认定为财务造假,其相应的隧道挖掘强度更高。本文建立的隧道挖掘模型具有良好的稳健性,研究结果能够为证监会提早发现财务造假公司,维护广大投资者切身利益提供数据参考和实证依据。
Previous studies have found that controlling shareholders were often accused of expropriating in-terests of minority shareholders by tunneling, such as abnormal related party transactions and fi-nancial manipulation, etc. Based on the Cscore financial fraud prediction model, the predicted performance and the interaction terms between the predicted performance and whether it is a loss, whether to refinance, whether the stock market is down, and whether financial fraud are used as core explanatory variables to construct a tunneling regression model, in order to study the mechanism of tunneling and empirically analyze the relationship between tunneling and the pre-risk Cscore of financial fraud. The research results show that: Overall, the predicted performance of listed companies is positively correlated with actual performance, and tunneling is positively correlated with the pre-risk Cscore of financial fraud. The higher the company’s predicted performance, the more significant the tunneling. As far as a single company is concerned, tunneling is positively correlated with refinancing and the stock market downturn, and negatively correlated with the occurrence of losses; if the company is identified as financial fraud by the China Securities Regulatory Commission, the corresponding tunneling intensity is higher. The tunneling model established in this paper has good robustness, and the research results can provide data reference and empirical evidence for the early detection of financial fraud companies by the China Securities Regulatory Commission and safeguard the vital interests of investors.
[1] | Johnson, S., Boone, P., Breach, A. and Friedman, E. (2000) Corporate Governance in the Asian Financial Crisis. Journal of Financial Economics, 58, 141-186. https://doi.org/10.1016/S0304-405X(00)00069-6 |
[2] | 张祥建, 徐晋. 股权再融资与大股东控制的“隧道效应”——对上市公司股权再融资偏好的再解释[J]. 管理世界, 2005(11): 127-136+151. |
[3] | Bertrand, M., Mehta, P. and Mullainathan, S. (2002) Ferreting Out Tunneling: An Application to In-dian Business Groups. The Quarterly Journal of Economics, 117, 121-148. https://doi.org/10.1162/003355302753399463 |
[4] | 刘少波. 控制权收益悖论与超控制权收益——对大股东侵害小股东利益的一个新的理论解释[J]. 经济研究, 2007, 42(2): 85-96. |
[5] | La Porta, R., Lopez-De-Silanes, F., Shleifer, A. and Vishny, R.W. (1997) Legal Determinants of External Finance. Journal of Finance, 52, 1131-1150. https://doi.org/10.1111/j.1540-6261.1997.tb02727.x |
[6] | 陈红, 黄晓玮, 许超. 终极控制权与大股东掏空关联度研究[J]. 华中师范大学学报(人文社会科学版), 2014, 53(2): 53-62. |
[7] | 李增泉, 孙铮, 王志伟. “掏空”与所有权安排——来自我国上市公司大股东资金占用的经验证据[J]. 会计研究, 2004(12): 3-13. |
[8] | 刘峰, 贺建刚, 魏明海. 控制权、业绩与利益输送——基于五粮液的案例研究[J]. 管理世界, 2004(8): 102-110+118. |
[9] | 钟腾, 汪昌云, 李宗龙. 股权结构、隧道效应与创新产出——来自制造业上市公司的证据[J]. 厦门大学学报(哲学社会科学版), 2020(6): 119-130. |
[10] | 苏冬蔚, 熊家财. 大股东掏空与CEO薪酬契约[J]. 金融研究, 2013(12): 167-180. |
[11] | 唐跃军, 左晶晶. 终极控制权、大股东治理战略与独立董事[J]. 审计研究, 2010(6): 93-99. |
[12] | 吴革, 叶陈刚. 财务报告舞弊的特征指标研究来自A股上市公司的经验数据[J]. 审计研究, 2008(6): 34-41. |
[13] | 张然, 陈思, 雷羽. SEC意见信与财务造假——基于中概股危机的实证分析[J]. 会计研究, 2015(7): 11-17. |
[14] | 张然, 陈思, 汪剑锋. PCAOB审计检查、审计师声誉与中概股危机[J]. 会计研究, 2014(2): 71-78. |
[15] | 洪荭, 胡华夏, 郭春飞. 基于Gone理论的上市公司财务报告舞弊识别研究[J]. 会计研究, 2012(8): 84-90. |
[16] | Beneish, M.D. (1999) The Detection of Earnings Manipulation. Financial Analysts Journal, 55, 24-36.
https://doi.org/10.2469/faj.v55.n5.2296 |
[17] | Dechow, P.M., Ge, W., Larson, C.R. and Sloan, R.G. (2011) Pre-dicting Material Accounting Misstatements. Contemporary Accounting Research, 28, 17-82. https://doi.org/10.1111/j.1911-3846.2010.01041.x |
[18] | 钱苹, 罗玫. 中国上市公司财务造假预测模型[J]. 会计研究, 2015(7): 18-25. |
[19] | 郑登津, 闫晓茗. 事前风险、审计师行为与财务舞弊[J]. 审计研究, 2017(4): 89-96. |
[20] | Jain, A. and Shinde, S. (2019) A Comprehensive Study of Data Mining-based Financial Fraud Detection Research. 2019 IEEE 5th International Conference for Convergence in Technology, Bombay, 29-31 March 2019, 1-4.
https://doi.org/10.1109/I2CT45611.2019.9033767 |
[21] | 秦茜. 上市公司的关联交易与成因分析[D]: [硕士学位论文]. 北京: 清华大学, 2003. |
[22] | 李小晗, 朱红军. 投资者有限关注与信息解读[J]. 金融研究, 2011(8): 128-142 |
[23] | 朱钧钧, 谢识予. 中国股市波动率的双重不对称性及其解释——基于MS-TGARCH模型的MCMC估计和分析[J]. 金融研究, 2011(3): 134-148. |
[24] | 杨道广, 王佳妮, 陈汉文. 业绩预告: “压力”抑或“治理”——来自企业创新的证据[J]. 南开管理评论, 2020, 23(4): 107-119. |