|
近40a青藏高原冬季极端降雪的变化特征分析
|
Abstract:
在全球变暖的背景下对青藏高原(简称高原)冬季极端降雪的时空变化特征进行研究,将对高原及周边地区政府部门在水资源的管控和利用方面有一定的参考意义。本文利用高原40个气象台站观测的1980~2019年冬季的逐日降水数据,运用百分位阈值法确定冬季极端降雪量阈值,进一步对极端降雪量、极端降雪频次、极端降雪强度以及极端降雪对降雪的贡献率(极端降雪量与总降雪量之比)的时空变化特征进行分析。结果表明:1) 高原冬季极端降雪量阈值、极端降雪量及极端降雪强度均呈现自东南向西北递减的空间分布特征,极端降雪频次主要在高原中东部存在大值区,其他地区较小,且极端降雪频次东南部大值区范围大于其他极端降雪指数;2) 1980~2019年高原冬季极端降雪量、极端降雪频次呈现显著增加的趋势,极端降雪强度增加趋势不显著。极端降雪量与极端降雪频次、强度的关系表明极端降雪的增加主要是与极端降雪频次的增加有关;3) 高原冬季极端降雪对总降雪的贡献率在空间上呈现自西南向东北递减的分布特征,时间上,贡献率呈现增加的趋势。总的来说,1980~2019年高原冬季极端降雪呈显著增加趋势,在总降雪中的占比也是增加的,这主要是与极端降雪事件的增多有关。
Under the background of global warming, studying the temporal and spatial variation characteristics of extreme snowfall in winter over the Tibetan Plateau (TP) will be of realistic reference to the management and utilization of water resources by government departments on the TP and its surrounding areas. In this paper, based on the daily precipitation data of 40 stations on the TP from 1980 to 2019, the percentile threshold method is used to determine the winter extreme snowfall threshold of each station, furthermore, the temporal and spatial variation characteristics of extreme snowfall, extreme snowfall frequency, extreme snowfall intensity and contribution rate of extreme snowfall to total snowfall (the ratio of extreme snowfall to total snowfall) are discussed. The results show that: 1) Extreme snowfall threshold, extreme snowfall and extreme snowfall intensity decreased from southeast to northwest of the TP, however, extreme snowfall frequency had larger value in the middle east of the TP, and with little value in other areas, and the range of large value of extreme snowfall frequency was larger than that of the other extreme snowfall indexes; 2) Both extreme snowfall mount and frequency indicated significantly increasing trend in winter over the TP during 1980~2019, while extreme snowfall intensity had an insignificantly rising trend. The increase of extreme snowfall is mainly related to the increase of extreme snowfall frequency; 3) The contribution rate of extreme snowfall to the total snowfall decreased from southern to northeast of the TP, and contribution rate presented an increasing trend during 1980~2019. Overall, both the extreme snowfall and contribution rate had an increasing trend during 1980~2019, which is mainly related to the increase of extreme snowfall events.
[1] | 赵宗慈, 罗勇, 黄建斌. 全球变暖与气候突变[J]. 气候变化研究进展, 2021, 17(1): 114-120. |
[2] | 徐雨晴, 苗秋菊, 沈永平. 2008年: 气候持续变暖, 极端事件频发[J]. 气候变化研究进展, 2009, 5(1): 56-60. |
[3] | 马耀明, 胡泽勇, 王宾宾, 等. 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象, 2021, 40(6): 1-22. |
[4] | Immerzeel, W.W., Van Beek, L.P.H. and Bierkens, M.F.P. (2010) Climate Change Will Affect the Asian Water Towers. Science, 32, 1382-1385. https://doi.org/10.1126/science.1183188 |
[5] | 陈德亮, 徐柏青, 姚檀栋, 郭正堂, 崔鹏, 陈发虎, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3023-3035. |
[6] | 马丽娟, 秦大河, 卞林根, 效存德, 罗勇. 青藏高原积雪的脆弱性评估[J]. 气候变化研究进展, 2010, 6(5): 325-331. |
[7] | 除多, 洛桑曲珍, 杨志刚, 杨勇. 1981-2010年青藏高原降雪日数时空变化特[J]. 应用气象学报, 2017, 28(3): 292-305. |
[8] | 朱晓凡, 张明军, 王圣杰, 李效收, 董蕾, 任正果. 1962-2012年青海省降雪初始终止日期和降雪日数的时空变化特征[J]. 生态学杂志, 2014, 33(3): 761-770. |
[9] | 胡豪然, 梁玲. 近50年青藏高原东部降雪的时空演变[J]. 地理学报, 2014, 69(5): 1002-1012. |
[10] | 蒋文轩, 假拉, 肖天贵, 罗布坚参, 周振波. 1971-2010年青藏高原冬季降雪气候变化及空间分布[J]. 冰川冻土, 2016, 38(5): 1211-1218. |
[11] | 刘义花, 鲁延荣, 周强, 李红梅, 刘彩红. 1961-2017年青海高原降雪时空变化分析研究[J]. 冰川冻土, 2019, 41(4): 809-817. |
[12] | IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis.
http://www.ipcc.cn. |
[13] | 王玉娟, 刘晓燕, 白爱娟, 祁栋林, 肖宏斌, 欧建芳. 1961-2017年三江源地区极端降雪指数变化特征分析[J]. 气象与环境学报, 2018, 34(6): 108-115. |
[14] | 赵求东, 赵传成, 秦艳, 苌亚平. 中国西北干旱区降雪和极端降雪变化特征及未来趋势[J]. 冰川冻土, 2020, 42(1): 81-90. |
[15] | 张林梅, 张建, 李建丽. 阿勒泰地区冬季极端降雪事件变化特征分析[J]. 干旱区资源与环境, 2014, 28(4): 89-95. |
[16] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端降水事件变化[J]. 地理学报, 2003, 58(z1): 1-10. |
[17] | 黄嘉佑, 李庆祥, 等. 气象数据统计分析方法[M]. 北京: 气象出版社, 2015. |
[18] | 邹进上, 曹彩珠. 影响青藏高原降雪的若干因子研究[J]. 水科学进展, 1991(1): 42-49. |