全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两种施氮条件下大豆品质性状QTL分析
QTL Analysis of Soybean Quality Traits under Two Nitrogen Application Conditions

DOI: 10.12677/HJAS.2021.119117, PP. 877-889

Keywords: 大豆,品质性状,QTL分析
Soybean
, Quality Traits, QTL Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

大豆是全球范围内食用蛋白和食用油脂的主要来源,同时也是动物饲料蛋白的最为重要的来源。大豆生长过程中,氮素的缺乏会严重影响大豆生长和发育,进而影响大豆产量和品质。目前关于氮素对大豆产量和品质的影响,已经有了大量研究报道,但是缺乏不施氮处理下大豆品质性状QTL分析的相关报道。本研究利用杂交组合“东农L13 × 黑河36”、“东农L13 × 合农60”衍生的两个重组自交系群体RIL3613和RIL6013为材料,在哈尔滨、阿城和双城3个地点进行正常施用氮肥和不施用氮肥两种条件种植,对大豆品质性状进行加性和上位性QTL定位,并对各性状进行氮肥响应QTL定位和候选基因预测,旨在剖析不同氮肥水平下大豆品质性状的遗传基础,发掘相关基因位点,为不同氮肥施用条件下的大豆分子设计育种提供技术和理论支撑,在RIL3613和RIL6013群体中共检出4个蛋白质含量加性QTL、2个油分含量加性QTL,单个加性QTL可解释0.20%~8.70%、7.23%~7.50%的表型变异。其中有1个油分含量加性QTL是新发现的。在RIL3613和RIL6013群体中共检出4对蛋白质含量上位性QTL,上位性QTL可解释4.04%~5.50%的表型变异。在RIL3613和RIL6013群体中共检出2个蛋白质含量氮肥响应QTL,单个氮肥响应QTL可解释8.88%~12.49%的表型变异,均是新发现的。利用SoyBase在线程序获得的标记信息,在4个一致QTL区间中,利用GO和KEGG数据库对1215个候选基因进行了筛选和注释。KEGG通路中,Ko04075参与植物激素信号转导途径,包括赤霉素、生长素、脱落酸等激素,在调节茎生长、植物生长和种子发育方面起着重要作用。基于Pathway分析和功能注释,最终鉴定出15个候选基因,被注释为囊泡转运v-SNARE家族蛋白基因、带有beta亚基和-2亚基基因的协同分子、SAUR样生长素应答蛋白家族基因、蔗糖非发酵相关蛋白激酶(SnRK)等,均是植物产量和品质形成等多种发育途径所必需的。
Soybean is the main source of edible protein and edible oil worldwide, and the most important source of animal feed protein. In the process of soybean growth, nitrogen deficiency will seriously affect the growth and development of soybean, and then affect the yield and quality of soybean. At present, there have been a lot of research reports on the effects of nitrogen on soybean yield and quality, but there is a lack of related reports on QTL analysis of soybean quality traits under nitrogen application. In this study, two recombinant inbred lines (RIL3613 and RIL6013) derived from hybrid combinations “Dongnong L13 × Heihe 36” and “Dongnong L13 × Henong 60” were used as materials to plant under two conditions of normal application of nitrogen fertilizer and no application of nitrogen fertilizer at three locations in Harbin, Acheng and Shuangcheng. For soybean quality traits, additive and epistatic QTL mapping, QTL mapping and the various characters are nitrogen response and candidate gene prediction, which aims to analyze the genetic basis of soybean quality traits under different nitrogen levels, explore related gene loci, for different conditions of soybean nitrogen molecular design breeding to provide technical and theoretical support. Four additive QTLs for protein content and two additive QTLs for oil content were detected in RIL3613 and RIL6013 populations, and a single additive QTL could explain 0.20%~8.70% and 7.23%~7.50% of the phenotypic variation. One additive QTL for oil content was newly discovered. A total of 4 pairs of epistatic QTLs for protein content were detected in RIL3613 and RIL6013 populations, and epistatic QTLs could

References

[1]  Diers, B.W., Keim, P., Fehr, W.R., et al. (1992) RFLP Analysis of Soybean Seed Protein and Oil Content. Theoretical and Applied Genetics, 83, 608-612.
https://doi.org/10.1007/BF00226905
[2]  Orf, J.H., Chase, K., Jarivk, T., et al. (1999) Genetics of Soybean Agronomic Traits: I. Comparison of Three Related Recombinant Inbred Populations. Crop Science, 39, 1642-1651.
https://doi.org/10.2135/cropsci1999.3961642x
[3]  Pathan, S.M., Vuong, T., Clark, K., et al. (2013) Genetic Mapping and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Contents and Seed Weight in Soybean. Crop Science, 53, 765-774.
https://doi.org/10.2135/cropsci2012.03.0153
[4]  Wang, J., Chen, P., Wang, D., et al. (2015) Identification and Mapping of Stable QTL for Protein Content in Soybean Seeds. Molecular Breeding, 35, 92.
https://doi.org/10.1007/s11032-015-0285-6
[5]  Karikair, B., Li, S., Bhat, J., et al. (2019) Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean under Multiple Environments Using High-Density Bin Map. International Journal of Molecular Sciences, 20, 979.
https://doi.org/10.3390/ijms20040979
[6]  宁海龙, 白雪莲, 李文滨, 等. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位[J]. 作物学报, 2016, 42(11): 1620-1628.
[7]  Bertin, P. and Gallais, A. (2001) Genetic Var-iation for Nitrogen Use Efficiency in Asset of Recombinant Inbred Lines II-QTL Detection and Coincidences. Maydica, 46, 53-68.
[8]  Loudet, O., Chaillou, S., Merigout, P., Talbotee, J. and Daniel-Vedele, F. (2003) Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis. Plant Physiology, 131, 345-358.
https://doi.org/10.1104/pp.102.010785
[9]  Coque, M. and Gallais, A. (2006) Genomic Regions Involved in Re-sponse to Grain Yield Selection at High and Low Nitrogen Fertilization in Maize. Theoretical and Applied Genetics, 112, 1205-1220.
https://doi.org/10.1007/s00122-006-0222-5
[10]  Ning, H.L., Yuan, J.Q., Dong, Q.Z., et al. (2018) Identification of QTLs Related to the Vertical Distribution and Seed-Set of Pod Number in Soybean [Glycine max (L.) Merr]. PLoS ONE, 13, e0195830.
https://doi.org/10.1371/journal.pone.0195830
[11]  Zhu, J. (1995) Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics. Genetics, 141, 1633-1639.
https://doi.org/10.1093/genetics/141.4.1633
[12]  Jiang, H., Li, Y., Qin, H., et al. (2018) Identification of Major QTLs Associated with First Pod Height and Candidate Gene Mining in Soybean. Frontiers in Plant Science, 9, Article No. 1280.
https://doi.org/10.3389/fpls.2018.01280
[13]  Zheng, H., Von Mollard, G.F., Kovaleva, V., et al. (1999) The Plant Vesicle-Associated SNARE AtVTI1a Likely Mediates Vesicle Transport from the Trans-Golgi Network to the Prevacuolar Compartment. Molecular Biology of the Cell, 10, 2251-2264.
https://doi.org/10.1091/mbc.10.7.2251
[14]  Hara-Nishimura, I., Shimada, T., Hatano, K., et al. (1998) Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large Precursor-Accumulating Vesicles. Plant Cell, 10, 825-836.
https://doi.org/10.1105/tpc.10.5.825
[15]  Stenbeck, G., Harter, C., Brecht, A., et al. (1993) Beta’-COP, a Novel Subunit of Coatomer. The EMBO Journal, 12, 2841-2845.
https://doi.org/10.1002/j.1460-2075.1993.tb05945.x
[16]  Belles-Boix, E., Babiychuk, E., Montagu, M.V., et al. (2000) CEF, a sec24 Homologue of Arabidopsis thaliana, Enhances the Survival of Yeast under Oxidative Stress Condi-tions. Journal of Experimental Botany, 51, 1761-1762.
https://doi.org/10.1093/jexbot/51.351.1761
[17]  Chevalier, D. and Walker, J.C. (2005) Functional Genomics of Protein Kinases in Plants. Briefings in Functional Genomics, 3, 362-371.
https://doi.org/10.1093/bfgp/3.4.362
[18]  Dong, X.-F., Cui, N., Wang, L., et al. (2012) The SnRK Protein Kinase Family and the Function of SnRK1 Protein Kinase. International Journal of Agriculture and Biology, 14, 575-579.
[19]  Shukla, V. and Mattoo, A.K. (2008) Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2): A Family of Protein Kinases Involved in Hyperosmotic Stress Signaling. Physiology and Molecular Biology of Plants, 14, 91.
https://doi.org/10.1007/s12298-008-0008-0
[20]  Li, D., Pfeiffer, W.T., Cornelius, P.L., et al. (2008) Soybean QTL for Yield and Yield Components Associated with Glycine soja Alleles. Crop Science, 48, 571-581.
https://doi.org/10.2135/cropsci2007.06.0361
[21]  Schmidt, R.C., Muller, A., Hain, R., et al. (1996) Transgenic Tobacco Plants Expressing the Arabidopsis thaliana Nitrilase II Enzyme. The Plant Journal, 9, 683-691.
https://doi.org/10.1046/j.1365-313X.1996.9050683.x
[22]  Lark, K.G., Chase, K., Adler, F., et al. (1995) Interac-tions between Quantitative Trait Loci in Soybean in Which Trait Variation at One Locus Is Conditional upon a Specific Allele at Another. PNAS USA, 92, 4656-4660.
https://doi.org/10.1073/pnas.92.10.4656
[23]  Sebolt, A.M., Shoemaker, R.C., Diers, B.W., et al. (2000) Analysis of a Quantitative Trait Locus Allele from Wild Soybean That Increases Seed Protein Concentration in Soybean. Crop Science, 40, 1438-1444.
https://doi.org/10.2135/cropsci2000.4051438x
[24]  Kabelka, E.A., Diers, B.W., Fehr, W.R., et al. (2004) Putative Alleles for Increased Yield from Soybean Plant Introductions. Crop Science, 44, 784-791.
https://doi.org/10.2135/cropsci2004.7840
[25]  Sun, D., Li, W., Zhang, Z., et al. (2006) Quantitative Trait Loci Analysis for the Developmental Behavior of Soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 112, 665-673.
https://doi.org/10.1007/s00122-005-0169-y
[26]  Guzma, P.S., Diers, B.W., Neece, D.J., et al. (2007) QTL Associated with Yield in Three Backcross-Derived Populations of Soybean. Crop Science, 47, 111-122.
https://doi.org/10.2135/cropsci2006.01.0003
[27]  Gai, J., Wang, Y., Wu, X., et al. (2016) A Comparative Study on Segregation Analysis and QTL Mapping of Quantitative Traits in Plants—With a Case in Soybean. Frontiers of Agricul-ture in China, 1, 1-7.
https://doi.org/10.1007/s11703-007-0001-3
[28]  Daniel-Vedele, F., Filleur, S. and Caboche, M. (1998) Nitrate Transport: A Key Step in Nitrate Assimilation. Current Opinion in Plant Biology, 1, 235-239.
https://doi.org/10.1016/S1369-5266(98)80110-6
[29]  郭庆元, 李志玉, 涂学文. 大豆高产优质施肥研究与应用[J]. 中国农学通报, 2003, 19(3): 89-96, 104.
[30]  谷秋荣, 郭鹏旭, 薛晓娅, 等. 不同氮肥类型对大豆根瘤生长特性及籽粒产量和品质的影响[J]. 中国农学通报, 2010, 26(14): 226-228.
[31]  倪丽, 章建新, 金加伟, 等. 氮肥施用对高产大豆根系、干物质积累及产量的影响[J]. 新疆农业大学学报, 2004, 27(2): 36-39.
[32]  才艳, 郑殿峰, 冯乃杰, 等. 氮肥施用量对大豆生长动态及干物质积累的影响[J]. 黑龙江八一农垦大学学报, 2007, 19(2): 13-16.
[33]  杜天庆, 苗果园. 氮肥施用量对生土地大豆生物性状和产量的影响[J]. 山西农业科学, 2006, 34(3): 53-55.
[34]  章建新, 李宁, 薛丽华, 等. 氮肥对菜用大豆产量和品质的影响[J]. 新疆农业大学学报, 2007, 30(1): 6-10.
[35]  张含彬, 伍晓燕, 杨文钰. 氮肥对套作大豆干物质积累与分配的影响[J]. 大豆科学, 2006, 25(4): 404-409.
[36]  丁洪, 郭庆元. 氮肥对不同品种大豆氮积累和产量品质的影响[J]. 土壤通报, 1995, 26(1): 18-21.
[37]  王雪依, 禹祥, 侯绪明, 等. 氮肥施用量对不同大豆品种产量及品质的影响[J]. 大豆科技, 2010(4): 9-11.
[38]  刘波, 苗保河, 李向东, 等. 氮磷肥对两种品质类型大豆脂肪及其组分含量的影响[J]. 大豆科学, 2007, 26(5): 736-739.
[39]  赵小铭, 宋秀吉, 王雪依, 等. 高油大豆东农46号脂肪含量的氮磷钾肥效应回归模型[J]. 中国农学通报, 2007, 23(7): 332-336.
[40]  宁海龙, 胡国华, 李文滨, 等. 氮磷钾底肥对大豆蛋白质含量的效应[J]. 大豆科学, 2006, 25(3): 288-293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133