|
两种施氮条件下大豆品质性状QTL分析
|
Abstract:
[1] | Diers, B.W., Keim, P., Fehr, W.R., et al. (1992) RFLP Analysis of Soybean Seed Protein and Oil Content. Theoretical and Applied Genetics, 83, 608-612. https://doi.org/10.1007/BF00226905 |
[2] | Orf, J.H., Chase, K., Jarivk, T., et al. (1999) Genetics of Soybean Agronomic Traits: I. Comparison of Three Related Recombinant Inbred Populations. Crop Science, 39, 1642-1651. https://doi.org/10.2135/cropsci1999.3961642x |
[3] | Pathan, S.M., Vuong, T., Clark, K., et al. (2013) Genetic Mapping and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Contents and Seed Weight in Soybean. Crop Science, 53, 765-774.
https://doi.org/10.2135/cropsci2012.03.0153 |
[4] | Wang, J., Chen, P., Wang, D., et al. (2015) Identification and Mapping of Stable QTL for Protein Content in Soybean Seeds. Molecular Breeding, 35, 92. https://doi.org/10.1007/s11032-015-0285-6 |
[5] | Karikair, B., Li, S., Bhat, J., et al. (2019) Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean under Multiple Environments Using High-Density Bin Map. International Journal of Molecular Sciences, 20, 979. https://doi.org/10.3390/ijms20040979 |
[6] | 宁海龙, 白雪莲, 李文滨, 等. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位[J]. 作物学报, 2016, 42(11): 1620-1628. |
[7] | Bertin, P. and Gallais, A. (2001) Genetic Var-iation for Nitrogen Use Efficiency in Asset of Recombinant Inbred Lines II-QTL Detection and Coincidences. Maydica, 46, 53-68. |
[8] | Loudet, O., Chaillou, S., Merigout, P., Talbotee, J. and Daniel-Vedele, F. (2003) Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis. Plant Physiology, 131, 345-358. https://doi.org/10.1104/pp.102.010785 |
[9] | Coque, M. and Gallais, A. (2006) Genomic Regions Involved in Re-sponse to Grain Yield Selection at High and Low Nitrogen Fertilization in Maize. Theoretical and Applied Genetics, 112, 1205-1220.
https://doi.org/10.1007/s00122-006-0222-5 |
[10] | Ning, H.L., Yuan, J.Q., Dong, Q.Z., et al. (2018) Identification of QTLs Related to the Vertical Distribution and Seed-Set of Pod Number in Soybean [Glycine max (L.) Merr]. PLoS ONE, 13, e0195830.
https://doi.org/10.1371/journal.pone.0195830 |
[11] | Zhu, J. (1995) Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics. Genetics, 141, 1633-1639. https://doi.org/10.1093/genetics/141.4.1633 |
[12] | Jiang, H., Li, Y., Qin, H., et al. (2018) Identification of Major QTLs Associated with First Pod Height and Candidate Gene Mining in Soybean. Frontiers in Plant Science, 9, Article No. 1280. https://doi.org/10.3389/fpls.2018.01280 |
[13] | Zheng, H., Von Mollard, G.F., Kovaleva, V., et al. (1999) The Plant Vesicle-Associated SNARE AtVTI1a Likely Mediates Vesicle Transport from the Trans-Golgi Network to the Prevacuolar Compartment. Molecular Biology of the Cell, 10, 2251-2264. https://doi.org/10.1091/mbc.10.7.2251 |
[14] | Hara-Nishimura, I., Shimada, T., Hatano, K., et al. (1998) Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large Precursor-Accumulating Vesicles. Plant Cell, 10, 825-836. https://doi.org/10.1105/tpc.10.5.825 |
[15] | Stenbeck, G., Harter, C., Brecht, A., et al. (1993) Beta’-COP, a Novel Subunit of Coatomer. The EMBO Journal, 12, 2841-2845. https://doi.org/10.1002/j.1460-2075.1993.tb05945.x |
[16] | Belles-Boix, E., Babiychuk, E., Montagu, M.V., et al. (2000) CEF, a sec24 Homologue of Arabidopsis thaliana, Enhances the Survival of Yeast under Oxidative Stress Condi-tions. Journal of Experimental Botany, 51, 1761-1762.
https://doi.org/10.1093/jexbot/51.351.1761 |
[17] | Chevalier, D. and Walker, J.C. (2005) Functional Genomics of Protein Kinases in Plants. Briefings in Functional Genomics, 3, 362-371. https://doi.org/10.1093/bfgp/3.4.362 |
[18] | Dong, X.-F., Cui, N., Wang, L., et al. (2012) The SnRK Protein Kinase Family and the Function of SnRK1 Protein Kinase. International Journal of Agriculture and Biology, 14, 575-579. |
[19] | Shukla, V. and Mattoo, A.K. (2008) Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2): A Family of Protein Kinases Involved in Hyperosmotic Stress Signaling. Physiology and Molecular Biology of Plants, 14, 91.
https://doi.org/10.1007/s12298-008-0008-0 |
[20] | Li, D., Pfeiffer, W.T., Cornelius, P.L., et al. (2008) Soybean QTL for Yield and Yield Components Associated with Glycine soja Alleles. Crop Science, 48, 571-581. https://doi.org/10.2135/cropsci2007.06.0361 |
[21] | Schmidt, R.C., Muller, A., Hain, R., et al. (1996) Transgenic Tobacco Plants Expressing the Arabidopsis thaliana Nitrilase II Enzyme. The Plant Journal, 9, 683-691. https://doi.org/10.1046/j.1365-313X.1996.9050683.x |
[22] | Lark, K.G., Chase, K., Adler, F., et al. (1995) Interac-tions between Quantitative Trait Loci in Soybean in Which Trait Variation at One Locus Is Conditional upon a Specific Allele at Another. PNAS USA, 92, 4656-4660.
https://doi.org/10.1073/pnas.92.10.4656 |
[23] | Sebolt, A.M., Shoemaker, R.C., Diers, B.W., et al. (2000) Analysis of a Quantitative Trait Locus Allele from Wild Soybean That Increases Seed Protein Concentration in Soybean. Crop Science, 40, 1438-1444.
https://doi.org/10.2135/cropsci2000.4051438x |
[24] | Kabelka, E.A., Diers, B.W., Fehr, W.R., et al. (2004) Putative Alleles for Increased Yield from Soybean Plant Introductions. Crop Science, 44, 784-791. https://doi.org/10.2135/cropsci2004.7840 |
[25] | Sun, D., Li, W., Zhang, Z., et al. (2006) Quantitative Trait Loci Analysis for the Developmental Behavior of Soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 112, 665-673. https://doi.org/10.1007/s00122-005-0169-y |
[26] | Guzma, P.S., Diers, B.W., Neece, D.J., et al. (2007) QTL Associated with Yield in Three Backcross-Derived Populations of Soybean. Crop Science, 47, 111-122. https://doi.org/10.2135/cropsci2006.01.0003 |
[27] | Gai, J., Wang, Y., Wu, X., et al. (2016) A Comparative Study on Segregation Analysis and QTL Mapping of Quantitative Traits in Plants—With a Case in Soybean. Frontiers of Agricul-ture in China, 1, 1-7.
https://doi.org/10.1007/s11703-007-0001-3 |
[28] | Daniel-Vedele, F., Filleur, S. and Caboche, M. (1998) Nitrate Transport: A Key Step in Nitrate Assimilation. Current Opinion in Plant Biology, 1, 235-239. https://doi.org/10.1016/S1369-5266(98)80110-6 |
[29] | 郭庆元, 李志玉, 涂学文. 大豆高产优质施肥研究与应用[J]. 中国农学通报, 2003, 19(3): 89-96, 104. |
[30] | 谷秋荣, 郭鹏旭, 薛晓娅, 等. 不同氮肥类型对大豆根瘤生长特性及籽粒产量和品质的影响[J]. 中国农学通报, 2010, 26(14): 226-228. |
[31] | 倪丽, 章建新, 金加伟, 等. 氮肥施用对高产大豆根系、干物质积累及产量的影响[J]. 新疆农业大学学报, 2004, 27(2): 36-39. |
[32] | 才艳, 郑殿峰, 冯乃杰, 等. 氮肥施用量对大豆生长动态及干物质积累的影响[J]. 黑龙江八一农垦大学学报, 2007, 19(2): 13-16. |
[33] | 杜天庆, 苗果园. 氮肥施用量对生土地大豆生物性状和产量的影响[J]. 山西农业科学, 2006, 34(3): 53-55. |
[34] | 章建新, 李宁, 薛丽华, 等. 氮肥对菜用大豆产量和品质的影响[J]. 新疆农业大学学报, 2007, 30(1): 6-10. |
[35] | 张含彬, 伍晓燕, 杨文钰. 氮肥对套作大豆干物质积累与分配的影响[J]. 大豆科学, 2006, 25(4): 404-409. |
[36] | 丁洪, 郭庆元. 氮肥对不同品种大豆氮积累和产量品质的影响[J]. 土壤通报, 1995, 26(1): 18-21. |
[37] | 王雪依, 禹祥, 侯绪明, 等. 氮肥施用量对不同大豆品种产量及品质的影响[J]. 大豆科技, 2010(4): 9-11. |
[38] | 刘波, 苗保河, 李向东, 等. 氮磷肥对两种品质类型大豆脂肪及其组分含量的影响[J]. 大豆科学, 2007, 26(5): 736-739. |
[39] | 赵小铭, 宋秀吉, 王雪依, 等. 高油大豆东农46号脂肪含量的氮磷钾肥效应回归模型[J]. 中国农学通报, 2007, 23(7): 332-336. |
[40] | 宁海龙, 胡国华, 李文滨, 等. 氮磷钾底肥对大豆蛋白质含量的效应[J]. 大豆科学, 2006, 25(3): 288-293. |