全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

拟南芥IDZ基因的系统发育、分子进化分析
Phylogenetic and Molecular Evolution Analysis of IDZ Gene in Arabidopsis thaliana

DOI: 10.12677/BR.2021.105092, PP. 724-733

Keywords: 拟南芥,IDZ基因家族,C2H2锌指蛋白,系统发育分析
Arabidopsis thaliana
, IDZ Gene Family, C2H2 Zinc Finger Protein, Phylogenetic Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cys2His2 (C2H2)型锌指蛋白是广泛存在于真核生物转录因子中的DNA结合模体。在大多数情况下,含有C2H2型锌指结构的蛋白是基因表达调控中的重要的转录调节因子,在细胞发育、分化和抑制恶性细胞转化(抑瘤)等过程中起着重要作用。拟南芥是第一个完成全基因组测序的植物,并作为模式生物被广泛运用于植物生物学各领域的研究中。拟南芥IDZ基因家族以C2H2型锌指蛋白结构为特征。本文运用生物信息学对拟南芥IDZ基因家族中的11个蛋白编码基因进行理化性质、系统发育分析、蛋白保守基序、染色体定位、互作蛋白网络、蛋白质三维结构分析。结果提示同组成员包含相似的保守基序和序列结构,IDZ基因在染色体上分布均匀,不存在串联重复片段。本研究为进一步研究IDZ家族的生物学功能和价值提供了科学依据。
The Cys2His2 (C2H2) type zinc finger protein is a DNA binding motif that exists widely in eukaryotic transcription factors. In most cases, proteins containing C2H2 type zinc finger structures are important transcription regulators in regulation of gene expression and play an important role in cell development, differentiation and inhibition of malignant cell transformation (tumor suppression). Arabidopsis was the first plant to complete the whole genome sequencing and is widely used as a model organism in various areas of plant biology. The IDZ gene family in Arabidopsis is characterized by the structure of C2H2 type zinc finger protein. In this study, 11 protein coding genes in IDZ gene family of Arabidopsis thaliana were analyzed by using bioinformatics, including physical and chemical properties, phylogenetic analysis, protein conserved motif, chromosome location, interacting protein network, and three-dimensional structure analysis. The results showed that the IDZ gene was distributed evenly on the chromosome and there were no tandem repeats in the IDZ gene. This study provides a scientific basis for further study on the biological function and value of the IDZ family.

References

[1]  Razin, S.V., Borunova, V.V., Maksimenko, O.G., et al. (2012) Cys2His2 Zinc Finger Protein Family: Classification, Functions, and Major Members. Biochemistry (Moscow), 77, 217-226.
https://doi.org/10.1134/S0006297912030017
[2]  Bjellqvist, B., Hughes, G.J., Pasquali, Ch., Paquet, N., Ravier, F., Sanchez, J.-Ch., Frutiger, S. and Hochstrasser, D.F. (1993) The Focusing Positions of Polypeptides in Immobilized pH Gradients Can Be Predicted from Their Amino Acid Sequences. Electrophoresis, 14, 1023-1031.
https://doi.org/10.1002/elps.11501401163
[3]  Bjellqvist, B., Basse, B., Olsen, E. and Celis, J.E. (1994) Reference Points for Comparisons of Two-Dimensional Maps of Proteins from Different Human Cell Types Defined in a pH Scale Where Isoelectric Points Correlate with Polypeptide Compositions. Electrophoresis, 15, 529-539.
https://doi.org/10.1002/elps.1150150171
[4]  Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker, J.M., Ed., The Proteomics Protocols Handbook, Humana Press, Totowa, 571-607.
https://doi.org/10.1385/1-59259-890-0:571
[5]  Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment. Journal of Molecular Biology, 302, 205-217.
https://doi.org/10.1006/jmbi.2000.4042
[6]  Robert, X. and Gouet, P. (2014) Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Research, 42, W320-W324.
https://doi.org/10.1093/nar/gku316
[7]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[8]  Bailey, T.L. and Elkan, C. (1994) Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. In: Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, 28-36.
[9]  Chen, C., et al. (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant, 13, 1194-1202.
https://doi.org/10.1016/j.molp.2020.06.009
[10]  Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D. and Bateman, A. (2021) Pfam: The Protein Families Database in 2021. Nucleic Acids Research, 49, D412-D419.
[11]  晁江涛, 孔英珍, 王倩, 孙玉合, 龚达平, 吕婧, 刘贯山. MapGene2Chrom基于Perl和SVG语言绘制基因物理图谱[J]. 遗传, 2015, 35(1): 91-97.
[12]  Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J. and von Mering, C. (2019) STRING v11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613.
https://doi.org/10.1093/nar/gky1131
[13]  The UniProt Consortium (2021) UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Research, 49, D480-D489.
[14]  Senior, A.W., Evans, R., Jumper, J., et al. (2020) Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature, 577, 706-710.
https://doi.org/10.1038/s41586-019-1923-7
[15]  Haasen, D., Kohler, C., Neuhaus, G. and Merkle, T. (1999) Nuclear Export of Proteins in Plants: AtXPO1 Is the Export Receptor for Leucine-Rich Nuclear Export Signals in Arabidopsis thaliana. Plant Journal, 20, 695-705.
https://doi.org/10.1046/j.1365-313X.1999.00644.x
[16]  Merkle, T. (2001) Nuclear Import and Export of Proteins in Plants: A Tool for the Regulation of Signalling. Planta, 213, 499-517.
https://doi.org/10.1007/s004250100621
[17]  Yang, M., May, W.S. and Ito, T. (1999) JAZ Requires the Double-Stranded RNA-Binding Zinc Finger Motifs for Nuclear Localization. Journal of Biological Chemistry, 274, 27399-27406.
https://doi.org/10.1074/jbc.274.39.27399

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133